skip to main content


Search for: All records

Creators/Authors contains: "Choi, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth’s atmosphere, is unknown. Because of deflection by interstellar magnetic fields, cosmic rays produced within the Milky Way arrive at Earth from random directions. However, cosmic rays interact with matter near their sources and during propagation, which produces high-energy neutrinos. We searched for neutrino emission using machine learning techniques applied to 10 years of data from the IceCube Neutrino Observatory. By comparing diffuse emission models to a background-only hypothesis, we identified neutrino emission from the Galactic plane at the 4.5σ level of significance. The signal is consistent with diffuse emission of neutrinos from the Milky Way but could also arise from a population of unresolved point sources.

     
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  2. Free, publicly-accessible full text available April 1, 2024
  3. Abstract Galactic PeV cosmic-ray accelerators (PeVatrons) are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in γ -rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 γ -ray sources with emissions above 100 TeV, making them candidates for PeVatrons. While at these high energies the Klein–Nishina effect exponentially suppresses leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these γ -ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 yr of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of γ -ray flux originating from the hadronic processes in the Crab Nebula and LHAASO J2226+6057. 
    more » « less