skip to main content


Search for: All records

Creators/Authors contains: "Choy, Wallace C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While there has been extensive investigation into modulating quasi‐2D perovskite compositions in light‐emitting diodes (LEDs) for promoting their electroluminescence, very few reports have studied approaches involving enhancement of the energy transfer between quasi‐2D perovskite layers of the film, which plays very important role for achieving high‐performance perovskite LEDs (PeLEDs). In this work, a bifunctional ligand of 4‐(2‐aminoethyl)benzoic acid (ABA) cation is strategically introduced into the perovskite to diminish the weak van der Waals gap between individual perovskite layers for promoting coupled quasi‐2D perovskite layers. In particular, the strengthened interaction between coupled quasi‐2D perovskite layers favors an efficient energy transfer in the perovskite films. The introduced ABA can also simultaneously passivate the perovskite defects by reducing metallic Pb for less nonradiative recombination loss. Benefiting from the advanced properties of ABA incorporated perovskites, highly efficient blue PeLEDs with external quantum efficiency of 10.11% and a very long operational stability of 81.3 min, among the best performing blue quasi‐2D PeLEDs, are achieved. Consequently, this work contributes an effective approach for high‐performance and stable blue PeLEDs toward practical applications.

     
    more » « less
  2. Abstract

    The development of in situ growth methods for the fabrication of high‐quality perovskite single‐crystal thin films (SCTFs) directly on hole‐transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large‐area high‐quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high‐quality large‐size MAPbBr3SCTFs on HTLs is investigated. An optimal “sweet spot” is determined: low interface energy between the precursor solution and substrate, a slow heating rate, and a moderate precursor solution concentration. As a result, the as‐obtained perovskite SCTFs with a thickness of 540 nm achieve a record area to thickness ratio of 1.94 × 104 mm, a record X‐ray diffraction peak full width at half maximum of 0.017°, and an ultralong carrier lifetime of 1552 ns. These characteristics enable the as‐obtained perovskite SCTFs to exhibit a record carrier mobility of 141 cm2V−1s−1and good long‐term structural stability over 360 days.

     
    more » « less