skip to main content


Search for: All records

Creators/Authors contains: "Christopher, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Controlled modulation of electronic and magnetic properties in stimuli‐responsive materials provides valuable insights for the design of magnetoelectric or multiferroic devices. This paper demonstrates the modulation of electrical and magnetic properties of a semiconductive, paramagnetic metal−organic framework Cu3(C6O6)2 with small gaseous molecules, NH3, H2S, and NO. This study merges chemiresistive and magnetic tests to reveal that the MOF undergoes simultaneous changes in electrical conductance and magnetization that are uniquely modulated by each gas. The features of response, including direction, magnitude, and kinetics, are modulated by the physicochemical properties of the gaseous molecules. This study advances the design of multifunctional materials capable of undergoing simultaneous changes in electrical and magnetic properties in response to chemical stimuli. 
    more » « less
    Free, publicly-accessible full text available April 8, 2025
  2. Free, publicly-accessible full text available January 11, 2025
  3. Plasma protein therapies are used by millions of people across the globe to treat a litany of diseases and serious medical conditions. One challenge in the manufacture of plasma protein therapies is the removal of salt ions (e.g., sodium, phosphate, and chloride) from the protein solution. The conventional approach to remove salt ions is the use of diafiltration membranes (e.g., tangential flow filtration) and ion-exchange chromatography. However, the ion-exchange resins within the chromatographic column as well as filtration membranes are subject to fouling by the plasma protein. In this work, we investigate the membrane capacitive deionization (MCDI) as an alternative separation platform for removing ions from plasma protein solutions with negligible protein loss. MCDI has been previously deployed for brackish water desalination, nutrient recovery, mineral recovery, and removal of pollutants from water. However, this is the first time this technique has been applied for removing 28% of ions (sodium, chloride, and phosphate) from human serum albumin solutions with less than 3% protein loss from the process stream. Furthermore, the MCDI experiments utilized highly conductive poly(phenylene alkylene)- based ion exchange membranes (IEMs). These IEMs combined with ionomer-coated nylon meshes in the spacer channel ameliorate Ohmic resistances in MCDI improving the energy efficiency. Overall, we envision MCDI as an effective separation platform in biopharmaceutical manufacturing for deionizing plasma protein solutions and other pharmaceutical formulations without a loss of active pharmaceutical ingredients. 
    more » « less
    Free, publicly-accessible full text available February 23, 2025
  4. Abstract

    We ask how environmental justice and urban ecology have influenced one another over the past 25 years in the context of the US Long-Term Ecological Research (LTER) program and Baltimore Ecosystem Study (BES) project. BES began after environmental justice emerged through activism and scholarship in the 1980s but spans a period of increasing awareness among ecologists and environmental practitioners. The work in Baltimore provides a detailed example of how ecological research has been affected by a growing understanding of environmental justice. The shift shows how unjust environmental outcomes emerge and are reinforced over time by systemic discrimination and exclusion. We do not comprehensively review the literature on environmental justice in urban ecology but do present four brief cases from the Caribbean, Africa, and Asia, to illustrate the global relevance of the topic. The example cases demonstrate the necessity for continuous engagement with communities in addressing environmental problem solving.

     
    more » « less
  5. Free, publicly-accessible full text available December 13, 2024
  6. Pulse oximetry represents a ubiquitous clinical application of optics in modern medicine. Recent studies have raised concerns regarding the potential impact of confounders, such as variable skin pigmentation and perfusion, on blood oxygen saturation measurement accuracy in pulse oximeters. Tissue-mimicking phantom testing offers a low-cost, well-controlled solution for characterizing device performance and studying potential error sources, which may thus reduce the need for costly in vivo trials. The purpose of this study was to develop realistic phantom-based test methods for pulse oximetry. Material optical and mechanical properties were reviewed, selected, and tuned for optimal biological relevance, e.g., oxygenated tissue absorption and scattering, strength, elasticity, hardness, and other parameters representing the human finger’s geometry and composition, such as blood vessel size and distribution, and perfusion. Relevant anatomical and physiological properties are summarized and implemented toward the creation of a preliminary finger phantom. To create a preliminary finger phantom, we synthesized a high-compliance silicone matrix with scatterers for embedding flexible tubing and investigated the addition of these scatterers to novel 3D printing resins for optical property control without altering mechanical stability, streamlining the production of phantoms with biologically relevant characteristics. Phantom utility was demonstrated by applying dynamic, pressure waveforms to produce tube volume change and resultant photoplethysmography (PPG) signals. 3D printed phantoms achieved more biologically relevant conditions compared to molded phantoms. These preliminary results indicate that the phantoms show strong potential to be developed into tools for evaluating pulse oximetry performance. Gaps, recommendations, and strategies are presented for continued phantom development.

     
    more » « less
  7. Abstract

    The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type–specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.

     
    more » « less
  8. Free, publicly-accessible full text available December 1, 2024
  9. Free, publicly-accessible full text available November 28, 2024
  10. Free, publicly-accessible full text available November 10, 2024