skip to main content


Search for: All records

Creators/Authors contains: "Clemens, J. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the discovery of two apparently isolated stellar remnants that exhibit rotationally modulated magnetic Balmer emission, adding to the emerging DAHe class of white dwarf stars. While the previously discovered members of this class show Zeeman-split triplet emission features corresponding to single magnetic field strengths, these two new objects exhibit significant fluctuations in their apparent magnetic field strengths with variability phase. The Zeeman-split hydrogen emission lines in LP 705−64 broaden from 9.4 to 22.2 MG over an apparent spin period of 72.629 min. Similarly, WD J143019.29−562358.33 varies from 5.8  to 8.9 MG over its apparent 86.394 min rotation period. This brings the DAHe class of white dwarfs to at least five objects, all with effective temperatures within 500 K of 8000 K and masses ranging from $0.65\,\,{\text{to}}\,\,0.83\, {\rm M}_{\odot }$.

     
    more » « less
  2. Abstract

    PG 1159-035 is the prototype of the PG 1159 hot (pre-)white dwarf pulsators. This important object was observed during the Kepler satellite K2 mission for 69 days in 59 s cadence mode and by the TESS satellite for 25 days in 20 s cadence mode. We present a detailed asteroseismic analysis of those data. We identify a total of 107 frequencies representing 32= 1 modes, 27 frequencies representing 12= 2 modes, and eight combination frequencies. The combination frequencies and the modes with very highkvalues represent new detections. The multiplet structure reveals an average splitting of 4.0 ± 0.4μHz for= 1 and 6.8 ± 0.2μHz for= 2, indicating a rotation period of 1.4 ± 0.1 days in the region of period formation. In the Fourier transform of the light curve, we find a significant peak at 8.904 ± 0.003μHz suggesting a surface rotation period of 1.299 ± 0.002 days. We also present evidence that the observed periods change on timescales shorter than those predicted by current evolutionary models. Our asteroseismic analysis finds an average period spacing for= 1 of 21.28 ± 0.02 s. The= 2 modes have a mean spacing of 12.97 ± 0.4 s. We performed a detailed asteroseismic fit by comparing the observed periods with those of evolutionary models. The best-fit model hasTeff= 129, 600 ± 11 100 K,M*= 0.565 ± 0.024M, andlogg=7.410.54+0.38, within the uncertainties of the spectroscopic determinations. We argue for future improvements in the current models, e.g., on the overshooting in the He-burning stage, as the best-fit model does not predict excitation for all of the pulsations detected in PG 1159-035.

     
    more » « less