skip to main content


Search for: All records

Creators/Authors contains: "Cohn, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A common approach to interpreting spiking activity is based on identifying the firing fields—regions in physical or configuration spaces that elicit responses of neurons. Common examples include hippocampal place cells that fire at preferred locations in the navigated environment, head direction cells that fire at preferred orientations of the animal’s head, view cells that respond to preferred spots in the visual field, etc. In all these cases, firing fields were discovered empirically, by trial and error. We argue that the existence and a number of properties of the firing fields can be established theoretically, through topological analyses of the neuronal spiking activity. In particular, we use Leray criterion powered by persistent homology theory, Eckhoff conditions and Region Connection Calculus to verify consistency of neuronal responses with a single coherent representation of space.

     
    more » « less
  2. Abstract

    Floods are important disturbances to urban socio‐eco‐technical systems and their meteorological drivers are projected to increase through the century due to global climate change. Urban flood models are numerical models that have the capability of representing the features of urban ecosystems and the mechanisms of flooding that impact them. They have the potential to play a critical role in flood risk assessment, operational response, and resilience planning, but existing models remain limited in their capability to represent integrated flooding processes in urban areas and provide the credible quantitative information needed to support risk assessment and resilience practice. Research to advance model development, facilitate intensive watershed monitoring for model parameterization and validation, and support collaboration between researchers and practitioners should be prioritized. This will represent a substantial, expensive effort, but will still be of great value as cities are faced with urgent challenges posed by climate change in coming decades.

     
    more » « less