skip to main content


Search for: All records

Creators/Authors contains: "Collier, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Global estimates of the land carbon sink are often based on simulations by terrestrial biosphere models (TBMs). The use of a large number of models that differ in their underlying hypotheses, structure and parameters is one way to assess the uncertainty in the historical land carbon sink. Here we show that the atmospheric forcing datasets used to drive these TBMs represent a significant source of uncertainty that is currently not systematically accounted for in land carbon cycle evaluations. We present results from three TBMs each forced with three different historical atmospheric forcing reconstructions over the period 1850–2015. We perform an analysis of variance to quantify the relative uncertainty in carbon fluxes arising from the models themselves, atmospheric forcing, and model-forcing interactions. We find that atmospheric forcing in this set of simulations plays a dominant role on uncertainties in global gross primary productivity (GPP) (75% of variability) and autotrophic respiration (90%), and a significant but reduced role on net primary productivity and heterotrophic respiration (30%). Atmospheric forcing is the dominant driver (52%) of variability for the net ecosystem exchange flux, defined as the difference between GPP and respiration (both autotrophic and heterotrophic respiration). In contrast, for wildfire-driven carbon emissions model uncertainties dominate and, as a result, model uncertainties dominate for net ecosystem productivity. At regional scales, the contribution of atmospheric forcing to uncertainty shows a very heterogeneous pattern and is smaller on average than at the global scale. We find that this difference in the relative importance of forcing uncertainty between global and regional scales is related to large differences in regional model flux estimates, which partially offset each other when integrated globally, while the flux differences driven by forcing are mainly consistent across the world and therefore add up to a larger fractional contribution to global uncertainty.

     
    more » « less
  2. Abstract

    Earth system models (ESMs) have been rapidly developed in recent decades to advance our understanding of climate change‐carbon cycle feedback. However, those models are massive in coding, require expensive computational resources, and have difficulty in diagnosing their performance. It is highly desirable to develop ESMs with modularity and effective diagnostics. Toward these goals, we implemented a matrix approach to the Community Land Model version 5 (CLM5) to represent carbon and nitrogen cycles. Specifically, we reorganized 18 balance equations each for carbon and nitrogen cycles among the 18 vegetation pools in the original CLM5 into two matrix equations. Similarly, 140 balance equations each for carbon and nitrogen cycles among the 140 soil pools were reorganized into two additional matrix equations. The vegetation carbon and nitrogen matrix equations are connected to soil matrix equations via litterfall. The matrix equations fully reproduce simulations of carbon and nitrogen dynamics by the original model. The computational cost for forwarding simulation of the CLM5 matrix model was 26% more expensive than the original model, largely due to calculation of additional diagnostic variables, but the spin‐up computational cost was significantly saved. We showed a case study on modeled soil carbon storage under two forcing data sets to illustrate the diagnostic capability that the matrix approach uniquely offers to understand simulation results of global carbon and nitrogen dynamics. The successful implementation of the matrix approach to CLM5, one of the most complex land models, demonstrates that most, if not all, the biogeochemical models can be reorganized into the matrix form to gain high modularity, effective diagnostics, and accelerated spin‐up.

     
    more » « less