skip to main content


Search for: All records

Creators/Authors contains: "Conant, Gavin C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We describe POInTbrowse, a web portal that gives access to the orthology inferences made for polyploid genomes with POInT, the Polyploidy Orthology Inference Tool. Ancient, or paleo-, polyploidy events are widely distributed across the eukaryotic phylogeny, and the combination of duplicated and lost duplicated genes that these polyploidies produce can confound the identification of orthologous genes between genomes. POInT uses conserved synteny and phylogenetic models to infer orthologous genes between genomes with a shared polyploidy. It also gives confidence estimates for those orthology inferences. POInTbrowsegives both graphical and query-based access to these inferences from 12 different polyploidy events, allowing users to visualize genomic regions produced by polyploidies and perform batch queries for each polyploidy event, downloading genes trees and coding sequences for orthologous genes meeting user-specified criteria. POInTbrowseand the associated data are online athttps://wgd.statgen.ncsu.edu.

     
    more » « less
  2. Abstract

    Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a “model clade”. These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a “model clade” and make suggestions for building global networks to support future studies in the model order Brassicales.

     
    more » « less
    Free, publicly-accessible full text available October 12, 2024
  3. Morrell, P (Ed.)
    Abstract By modeling the homoeologous gene losses that occurred in 50 genomes deriving from ten distinct polyploidy events, we show that the evolutionary forces acting on polyploids are remarkably similar, regardless of whether they occur in flowering plants, ciliates, fishes, or yeasts. We show that many of the events show a relative rate of duplicate gene loss before the first postpolyploidy speciation that is significantly higher than in later phases of their evolution. The relatively weak selective constraint experienced by the single-copy genes these losses produced leads us to suggest that most of the purely selectively neutral duplicate gene losses occur in the immediate postpolyploid period. Nearly all of the events show strong evidence of biases in the duplicate losses, consistent with them being allopolyploidies, with 2 distinct progenitors contributing to the modern species. We also find ongoing and extensive reciprocal gene losses (alternative losses of duplicated ancestral genes) between these genomes. With the exception of a handful of closely related taxa, all of these polyploid organisms are separated from each other by tens to thousands of reciprocal gene losses. As a result, it is very unlikely that viable diploid hybrid species could form between these taxa, since matings between such hybrids would tend to produce offspring lacking essential genes. It is, therefore, possible that the relatively high frequency of recurrent polyploidies in some lineages may be due to the ability of new polyploidies to bypass reciprocal gene loss barriers. 
    more » « less
  4. Abstract

    In C4plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4acid decarboxylases being used to release CO2in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4species into three biochemical sub‐types. However, more recently, the notion that C4species mix and match C4acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub‐types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3species in the Paniceae enables the preliminary exploration of C4sub‐type evolution.

     
    more » « less
  5. Summary

    Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication.

    In order to test the connection between domestication and polyploidy, we identified and examined candidate genes associated with the domestication of the diverse crop varieties ofBrassica rapa. Like all ‘diploid’ flowering plants,B. rapahas a diploidized paleopolyploid genome and experienced many rounds of whole genome duplication (WGD). We analyzed transcriptome data of more than 100 cultivatedB. rapaaccessions.

    Using a combination of approaches, we identified > 3000 candidate genes associated with the domestication of four majorB. rapacrop varieties. Consistent with our expectation, we found that the candidate genes were significantly enriched with genes derived from the Brassiceae mesohexaploidy. We also observed that paleologs were significantly more diverse than non‐paleologs.

    Our analyses find evidence for that genetic diversity derived from ancient polyploidy played a key role in the domestication ofB. rapaand provide support for its importance in the success of modern agriculture.

     
    more » « less
  6. Premise

    Whole‐genome duplications (WGDs) are prevalent throughout the evolutionary history of plants. For example, dozens of WGDs have been phylogenetically localized across the order Brassicales, specifically, within the family Brassicaceae. A WGD event has also been identified in the Cleomaceae, the sister family to Brassicaceae, yet its placement, as well as that of WGDs in other families in the order, remains unclear.

    Methods

    Phylo‐transcriptomic data were generated and used to infer a nuclear phylogeny for 74 Brassicales taxa. Genome survey sequencing was also performed on 66 of those taxa to infer a chloroplast phylogeny. These phylogenies were used to assess and confirm relationships among the major families of the Brassicales and within Brassicaceae. Multiple WGD inference methods were then used to assess the placement of WGDs on the nuclear phylogeny.

    Results

    Well‐supported chloroplast and nuclear phylogenies for the Brassicales and the putative placement of the Cleomaceae‐specific WGD event Th‐ɑ are presented. This work also provides evidence for previously hypothesized WGDs, including a well‐supported event shared by at least two members of the Resedaceae family, and a possible event within the Capparaceae.

    Conclusions

    Phylogenetics and the placement of WGDs within highly polyploid lineages continues to be a major challenge. This study adds to the conversation on WGD inference difficulties by demonstrating that sampling is especially important for WGD identification and phylogenetic placement. Given its economic importance and genomic resources, the Brassicales continues to be an ideal group for assessing WGD inference methods.

     
    more » « less