skip to main content


Search for: All records

Creators/Authors contains: "Conroy, Charlie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We model the stellar abundances and ages of two disrupted dwarf galaxies in the Milky Way stellar halo: Gaia-Sausage Enceladus (GSE) and Wukong/LMS-1. Using a statistically robust likelihood function, we fit one-zone models of galactic chemical evolution with exponential infall histories to both systems, deriving e-folding time-scales of τin = 1.01 ± 0.13 Gyr for GSE and $\tau _\text{in} = 3.08^{+3.19}_{-1.16}$ Gyr for Wukong/LMS-1. GSE formed stars for $\tau _\text{tot} = 5.40^{+0.32}_{-0.31}$ Gyr, sustaining star formation for ∼1.5–2 Gyr after its first infall into the Milky Way ∼10 Gyr ago. Our fit suggests that star formation lasted for $\tau _\text{tot} = 3.36^{+0.55}_{-0.47}$ Gyr in Wukong/LMS-1, though our sample does not contain any age measurements. The differences in evolutionary parameters between the two are qualitatively consistent with trends with stellar mass M⋆ predicted by simulations and semi-analytic models of galaxy formation. Our inferred values of the outflow mass-loading factor reasonably match $\eta \propto M_\star ^{-1/3}$ as predicted by galactic wind models. Our fitting method is based only on Poisson sampling from an evolutionary track and requires no binning of the data. We demonstrate its accuracy by testing against mock data, showing that it accurately recovers the input model across a broad range of sample sizes (20 ≤ N ≤ 2000) and measurement uncertainties (0.01 ≤ σ[α/Fe], σ[Fe/H] ≤ 0.5; $0.02 \le \sigma _{\log _{10}(\text{age})} \le 1$). Due to the generic nature of our derivation, this likelihood function should be applicable to one-zone models of any parametrization and easily extensible to other astrophysical models which predict tracks in some observed space.

     
    more » « less
  2. Abstract

    Elongated bar-like features are ubiquitous in galaxies, occurring at the centers of approximately two-thirds of spiral disks in the nearby Universe. Due to gravitational interactions between the bar and the other components of galaxies, it is expected that angular momentum and matter will redistribute over long (Gyr) timescales in barred galaxies. Previous work ignoring the gas phase of galaxies has conclusively demonstrated that bars should slow their rotation over time due to their interaction with dark matter halos. We have performed a simulation of a Milky Way–like galactic disk hosting a strong bar, including a state-of-the-art model of the interstellar medium and a live dark matter halo. In this simulation, the bar pattern does not slow down over time, and instead it remains at a stable, constant rate of rotation. This behavior has been observed in previous simulations using more simplified models for the interstellar gas, but the apparent lack of secular evolution has remained unexplained. We find that the presence of the gas phase arrests the process by which the dark matter halo slows down a bar, a phenomenon we term bar locking. This locking is responsible for stabilizing the bar pattern speed. We find that, in a Milky Way–like disk, a gas fraction of only about 5% is necessary for this mechanism to operate. Our result naturally explains why nearly all observed bars rotate rapidly and is especially relevant for our understanding of how the Milky Way arrived at its present state.

     
    more » « less
  3. We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies at z ∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1 using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation with σv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] and σv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of the z ∼ 0.7 quiescent galaxies are strikingly similar to those at z ∼ 0. However, at the lowest-velocity dispersions, the z ∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than their z ∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of both z ∼ 0 and z ∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited. 
    more » « less
    Free, publicly-accessible full text available May 10, 2024
  4. Abstract

    The Magellanic Stream (MS)—an enormous ribbon of gas spanning 140° of the southern sky trailing the Magellanic Clouds—has been exquisitely mapped in the five decades since its discovery. However, despite concerted efforts, no stellar counterpart to the MS has been conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, constraining its formation and the past orbital history of the Clouds. We have been conducting a spectroscopic survey of the most distant and luminous red giant stars in the Galactic outskirts. From this data set, we have discovered a prominent population of 13 stars matching the extreme angular momentum of the Clouds, spanning up to 100° along the MS at distances of 60–120 kpc. Furthermore, these kinematically selected stars lie along an [α/Fe]-deficient track in chemical space from −2.5 < [Fe/H] <− 0.5, consistent with their formation in the Clouds themselves. We identify these stars as high-confidence members of the Magellanic Stellar Stream. Half of these stars are metal-rich and closely follow the gaseous MS, whereas the other half are more scattered and metal-poor. We argue that the metal-rich stream is the recently formed tidal counterpart to the MS, and we speculate that the metal-poor population was thrown out of the SMC outskirts during an earlier interaction between the Clouds. The Magellanic Stellar Stream provides a strong set of constraints—distances, 6D kinematics, and birth locations—that will guide future simulations toward unveiling the detailed history of the Clouds.

     
    more » « less
  5. Abstract

    We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies atz∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation withσv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] andσv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of thez∼ 0.7 quiescent galaxies are strikingly similar to those atz∼ 0. However, at the lowest-velocity dispersions, thez∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than theirz∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of bothz∼ 0 andz∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited.

     
    more » « less
  6. ABSTRACT

    Accurate determination of the rates of nova eruptions in different kinds of galaxies gives us strong constraints on those galaxies’ underlying white dwarf and binary populations, and those stars’ spatial distributions. Until 2016, limitations inherent in ground-based surveys of external galaxies – and dust extinction in the Milky Way – significantly hampered the determination of those rates and how much they differ between different types of galaxies. Infrared Galactic surveys and dense cadence Hubble Space Telescope(HST)-based surveys are overcoming these limitations, leading to sharply increased nova-in-galaxy rates relative to those previously claimed. Here, we present 14 nova candidates that were serendipitously observed during a year-long HST survey of the massive spiral galaxy M51 (the ‘Whirlpool Galaxy’). We use simulations based on observed nova light curves to model the incompleteness of the HST survey in unprecedented detail, determining a nova detection efficiency ϵ = 20.3 per cent. The survey’s M51 area coverage, combined with ϵ, indicates a conservative M51 nova rate of $172^{+46}_{-37}$ novae yr−1, corresponding to a luminosity-specific nova rate (LSNR) of $\sim\!10.4^{+2.8}_{-2.2}$ novae yr−1/1010L⊙,K. Both these rates are approximately an order of magnitude higher than those estimated by ground-based studies, contradicting claims of universal low nova rates in all types of galaxies determined by low cadence, ground-based surveys. They demonstrate that, contrary to theoretical models, the HST-determined LSNR in a giant elliptical galaxy (M87) and a giant spiral galaxy (M51) likely do not differ by an order of magnitude or more, and may in fact be quite similar.

     
    more » « less
  7. Abstract

    The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo.

     
    more » « less
  8. Abstract Modern Galactic surveys have revealed an ancient merger that dominates the stellar halo of our galaxy (Gaia–Sausage–Enceladus, GSE). Using chemical abundances and kinematics from the H3 Survey, we identify 5559 halo stars from this merger in the radial range r Gal = 6–60kpc. We forward model the full selection function of H3 to infer the density profile of this accreted component of the stellar halo. We consider a general ellipsoid with principal axes allowed to rotate with respect to the galactocentric axes, coupled with a multiply broken power law. The best-fit model is a triaxial ellipsoid (axes ratios 10:8:7) tilted 25° above the Galactic plane toward the Sun and a doubly broken power law with breaking radii at 12 kpc and 28 kpc. The doubly broken power law resolves a long-standing dichotomy in literature values of the halo breaking radius, being at either ∼15 kpc or ∼30 kpc assuming a singly broken power law. N -body simulations suggest that the breaking radii are connected to apocenter pile-ups of stellar orbits, and so the observed double-break provides new insight into the initial conditions and evolution of the GSE merger. Furthermore, the tilt and triaxiality of the stellar halo could imply that a fraction of the underlying dark matter halo is also tilted and triaxial. This has important implications for dynamical mass modeling of the galaxy as well as direct dark matter detection experiments. 
    more » « less
  9. ABSTRACT

    We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirm that a saturated MB law, which was previously found to describe the spin-down of rapidly rotating isolated M dwarfs, also operates in tidally locked binaries. We advocate using saturated MB models in binary evolution calculations. Our work supports previous suggestions that MB in cataclysmic variables (CVs) is much weaker than assumed in the standard evolutionary model, unless mass transfer leads to significant additional angular momentum loss in CVs.

     
    more » « less
  10. Abstract One of the most common methods for inferring galaxy attenuation curves is via spectral energy distribution (SED) modeling, where the dust attenuation properties are modeled simultaneously with other galaxy physical properties. In this paper, we assess the ability of SED modeling to infer these dust attenuation curves from broadband photometry, and suggest a new flexible model that greatly improves the accuracy of attenuation curve derivations. To do this, we fit mock SEDs generated from the simba cosmological simulation with the prospector SED fitting code. We consider the impact of the commonly assumed uniform screen model and introduce a new nonuniform screen model parameterized by the fraction of unobscured stellar light. This nonuniform screen model allows for a nonzero fraction of stellar light to remain unattenuated, resulting in a more flexible attenuation curve shape by decoupling the shape of the UV attenuation curve from the optical attenuation curve. The ability to constrain the dust attenuation curve is significantly improved with the use of a nonuniform screen model, with the median offset in UV attenuation decreasing from −0.30 dex with a uniform screen model to −0.17 dex with the nonuniform screen model. With this increase in dust attenuation modeling accuracy, we also improve the star formation rates (SFRs) inferred with the nonuniform screen model, decreasing the SFR offset on average by 0.12 dex. We discuss the efficacy of this new model, focusing on caveats with modeling star-dust geometries and the constraining power of available SED observations. 
    more » « less