skip to main content


Search for: All records

Creators/Authors contains: "Cooke, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. ABSTRACT

    We present results from a search for the radio counterpart to the possible neutron star–black hole merger GW190814 with the Australian Square Kilometre Array Pathfinder. We have carried out 10 epochs of observation spanning 2–655 d post-merger at a frequency of 944 MHz. Each observation covered 30 deg2, corresponding to 87 per cent of the posterior distribution of the merger’s sky location. We conducted an untargeted search for radio transients in the field, as well as a targeted search for transients associated with known galaxies. We find one radio transient, ASKAP J005022.3−230349, but conclude that it is unlikely to be associated with the merger. We use our observations to place constraints on the inclination angle of the merger and the density of the surrounding environment by comparing our non-detection to model predictions for radio emission from compact binary coalescences. This survey is also the most comprehensive widefield search (in terms of sensitivity and both areal and temporal coverage) for radio transients to-date and we calculate the radio transient surface density at 944 MHz.

     
    more » « less
  3. A public deep and wide science enabling survey will be needed to discover these black holes and supernovae, and to cover the area large enough for cosmic infrared background to be reliably studied. This enabling survey will find a large number of other transients and enable supernova cosmology up to z 5. 
    more » « less
  4. Abstract On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope’s Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond. 
    more » « less
  5. null (Ed.)
  6. ABSTRACT

    Searches for optical transients are usually performed with a cadence of days to weeks, optimized for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour time-scales. Here, we present the results of deep searches for dim, minute-time-scale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20 s exposures to systematically probe time-scales down to 1.17 min at magnitude limits g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multiband imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multifacility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-time-scale fast optical transient rates for a range of depths and time-scales. Finally, we demonstrate that optical g-band light-curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.

     
    more » « less