skip to main content


Search for: All records

Creators/Authors contains: "Corcoran, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

     
    more » « less
  2. Abstract

    Arctic precipitation is predicted to increase this century. Records of past precipitation seasonality provide baselines for a mechanistic understanding of the dynamics controlling Arctic precipitation. We present an approach to reconstruct Arctic precipitation seasonality using stable hydrogen isotopes (δ2H) of aquatic plant waxes in neighboring lakes with contrasting water residence times and present a case study of this approach in two lakes on western Greenland. Residence time calculations suggest that growing season lake water δ2H in one lake reflects summer precipitation δ2H, while the other reflects amount‐weighted annual precipitation δ2H and evaporative enrichment. Aquatic plant wax δ2H in the “summer lake” is relatively constant throughout the Holocene, perhaps reflecting competing effects of local summer warmth and increased distal moisture transport due to a strengthened latitudinal temperature gradient. In contrast, aquatic plant wax δ2H in the “mean annual lake” is 100‰2H depleted from 6 to 4 ka relative to the beginning and end of the record. Because there are relatively minor changes in summer precipitation δ2H, we interpret the 100‰2H depletion in mean annual precipitation to reflect an increase in winter precipitation amount, likely accompanied by changes in winter precipitation δ2H and decreased evaporative enrichment. Thus, unlike the “summer lake,” the “mean annual lake” records changes in winter precipitation. This dual‐lake approach may be applied to reconstruct past changes in precipitation seasonality at sites with strong precipitation isotope seasonality and minimal lake water evaporative enrichment.

     
    more » « less
  3. Abstract

    Reservoirs along rivers have the potential to act as nutrient sinks (e.g., denitrification and sedimentation) or sources (e.g., decomposition and redox changes), potentially reducing or enhancing nutrient loads downstream. This study investigated the spatial and temporal variability of water and lakebed sediment chemistry for an agricultural reservoir, Carlyle Lake (Illinois, U.S.), to assess the role of sediments as nutrient sinks or sources. Samples were collected across the reservoir over a 2‐year period. We measured N‐ and P‐species in water at the sediment‐water interface, in sediment porewaters, and loosely bound to sediment exchange sites. Total N, total P, total C, organic matter, Fe, Mn, and grain size were measured in bulk sediments. We observed a strong gradient in sedimentary total N, total P, total C, organic matter, and metals along the reservoir, with the lowest concentrations at the river mouth and the highest concentrations near the dam. Additionally, we did a long‐term nutrient mass balance using historical water quality data for streams entering and exiting the reservoir and the reservoir itself. Mass balance calculations showed that Carlyle Lake, on average, removed 2,738 Mg N/year and released 121 Mg P/year over the multidecadal observation period. While N was consistently removed from the system over time, P was initially stored in, but later released from, the reservoir. The subsequent release of legacy P from the reservoir led to higher outgoing, compared with incoming, P loads. Thus, reservoirs in intensively managed landscapes can act as sinks for N but sources for P over decadal timescales.

     
    more » « less