skip to main content


Search for: All records

Creators/Authors contains: "Cordell, Susan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many degraded ecosystems have altered nutrient dynamics due to invaders’ possessing a suite of traits that allow them to both outcompete native species and alter the environment. In ecosystems where invasive species have increased nutrient turnover rates, it can be difficult to reduce nutrient availability. This study examined whether a functional trait‐based restoration approach involving the planting of species with conservative nutrient‐use traits could slow rates of nutrient cycling and consequently reduce rates of invasion. We examined a functional trait restoration initiative in a heavily invaded lowland wet forest site in Hilo, Hawaiʻi. Native and introduced species were chosen to create four experimental hybrid forest communities, in comparison to the invaded forest, with a factorial design in which communities varied in rates of carbon turnover (slow or moderate [SLOW, MOD]), and in the relationship of species in trait space (redundant or complementary [RED, COMP]). After the first 5 years, we evaluated community‐level outcomes related to nutrient cycling: carbon (C), nitrogen (N), and phosphorus (P) via litterfall, litter decomposition, and outplant productivity and rates of invasion. We found that (1) regardless of treatment, the experimental communities had low rates of nutrient cycling through litterfall relative to the invaded reference forest, (2) the MOD communities had greater nutrient release via litterfall than the SLOW communities, (3) introduced species had greater nutrient release than native species in the two MOD experimental communities, and (4) within treatments, there was a positive relationship between nutrient levels and outplant basal area, but outplant basal area was negatively associated with rates of invasion. The negative relationships among basal area and weed invasion, particularly for the two COMP treatments, suggest species existing in different parts of trait space may help confer some degree of invasion resistance. The diversification of trait space was facilitated by the use of introduced species, a new concept in Hawaiian forest management. Although challenges remain in endeavors to restore this heavily degraded ecosystem, this study provides evidence that functional trait‐based restoration approaches using carefully crafted hybrid communities can reduce rates of nutrient cycling and invasion in order to reach management goals.

     
    more » « less
  2. Globalization has undeniably impacted the Earth’s ecosystems, but it has also influenced how we think about natural systems. Three fourths of the world’s forests are now altered by human activity, which challenges our concepts of native ecosystems. The dichotomies of pristine vs. disturbed as well as our view of native and non-native species, have blurred; allowing us to acknowledge new paradigms about how humans and nature interact. We now understand that the use of militaristic language to define the perceived role of a plant species is holding us back from the fact that novel systems (new combinations of all species) can often provide valuable ecosystem services (i.e., water, carbon, nutrients, cultural, and recreation) for creatures (including humans). In reality, ecosystems exist in a gradient from native to intensely managed – and “non-nativeness” is not always a sign of a species having negative effects. In fact, there are many contemporary examples of non-native species providing critical habitat for endangered species or preventing erosion in human-disturbed watersheds. For example, of the 8,000–10,000 non-native species introduced to Hawai‘i, less than 10% of these are self-sustaining and 90 of those pose a danger to native biota and are considered invasive. In this paper, we explore the native/non-native binary, the impacts of globalization and the political language of invasion through the lens of conservation biology and sociology with a tropical island perspective. This lens gives us the opportunity to offer a place-based approach toward the use of empirical observation of novel species interactions that may help in evaluating management strategies that support biodiversity and ecosystem services. Finally, we offer a first attempt at conceptualizing a site-specific approach to develop “metrics of belonging” within an ecosystem. 
    more » « less
  3. Understanding how environmental adaptations mediate plant and ecosystem responses becomes increasingly important under accelerating global environmental change. Multi-stemmed trees, for example, differ in form and function from single-stemmed trees and may possess physiological advantages that allow for persistence during stressful climatic events such as extended drought. Following the worst drought in Hawaii in a century, we examined patterns of stem abundance and turnover in a Hawaiian lowland dry forest (LDF) and a montane wet forest (MWF) to investigate how multi-stemmed trees might influence site persistence, and how stem abundance and turnover relate to key functional traits. We found stem abundance and multi-stemmed trees to be an important component for climate resilience within the LDF. The LDF had higher relative abundance of multi-stemmed trees, stem abundance, and mean stem abundance compared to a reference MWF. Within the LDF, multi-stemmed trees had higher relative stem abundance (i.e., percent composition of stems to the total number of stems in the LDF) and higher estimated aboveground carbon than single-stemmed trees. Stem abundance varied among species and tree size classes. Stem turnover (i.e., change in stem abundance between five-year censuses) varied among species and tree size classes and species mean stem turnover was correlated with mean species stem abundance per tree. At the plot level, stem abundance per tree is also a predictor of survival, though mortality did not differ between multiple- and single-stemmed trees. Lastly, species with higher mean stem abundance per tree tended to have traits associated with a higher light-saturated photosynthetic rate, suggesting greater productivity in periods with higher water supply. Identifying the traits that allow species and forest communities to persist in dry environments or respond to disturbance is useful for forecasting ecological climate resilience or potential for restoration in tropical dry forests. 
    more » « less
  4. Abstract

    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. null (Ed.)
  6. Abstract

    Habitat‐suitability indices (HSI) have been employed in restoration to identify optimal sites for planting native species. Often, HSI are based on abiotic variables and do not include biotic interactions, even though similar abiotic conditions can favor both native and nonnative species. Biotic interactions such as competition may be especially important in invader‐dominated habitats because invasive species often have fast growth rates and can exploit resources quickly. In this study, we test the utility of an HSI of microtopography derived from airborne LiDAR to predict post‐disturbance recovery and native planting success in native shrub‐dominated and nonnative, invasive grass‐dominated dryland habitats in Hawaiʻi. The HSI uses high‐resolution digital terrain models to classify sites' microtopography as high, medium, or low suitability, based on wind exposure and topographic position. We used a split‐plot before‐after‐control‐impact design to implement a disturbance experiment within native shrub (Dodonaea viscosa) and nonnative, invasive grass (Cenchrus clandestinus)‐dominated ecosystems across three microtopography categories. In contrast to previous studies using the same HSI, we found that microtopography was a poor predictor of pre‐disturbance conditions for soil nutrients, organic matter content, or foliar C:N, within bothDodonaeaandCenchrusvegetation types. In invader‐dominatedCenchrusplots, microtopography helped predict cover, but not as expected (i.e., highest cover would be in high‐suitability plots):D. viscosahad the greatest cover in low‐suitability andC. clandestinushad the greatest cover in medium‐suitability plots. Similarly, in native‐dominatedDodonaeaplots, microtopography was a poor predictor ofD. viscosa,C. clandestinus, and total plant cover. Although we found some evidence that microtopography helped inform post‐disturbance plant recovery ofD. viscosaand total plant cover, vegetation type was a more important predictor. Important for considering the success of plantings, percent cover ofD. viscosadecreased while percent cover ofC. clandestinusincreased within both vegetation types 20 months after disturbance. Our results are evidence that HSIs based on topographic features may prove most useful for choosing planting sites in harsh habitats or those already dominated by native species. In more productive habitats, competition from resident species may offset any benefits gained from “better” suitability sites.

     
    more » « less
  7. Abstract

    Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community‐level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best‐fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koaandMetrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community‐level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.

     
    more » « less
  8. null (Ed.)
    Abstract Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity. 
    more » « less