skip to main content


Search for: All records

Creators/Authors contains: "Cotton, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud. The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ∼7° × 7° and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ∼11 μJy beam−1. The catalogue produced from these images contains 108 330 point sources and 517 compact extended sources. We also describe a UHF (544–1088 MHz) single pointing observation. We report the detection of a new confirmed Supernova Remnant (SNR; MCSNR J0100–7211) with an X-ray magnetar at its centre and 10 new SNR candidates. This is in addition to the detection of 21 previously confirmed SNRs and two previously noted SNR candidates. Our new SNR candidates have typical surface brightness an order of magnitude below those previously known, and on the whole they are larger. The high sensitivity of the MeerKAT survey also enabled us to detect the bright end of the SMC Planetary Nebulae (PNe) sample – point-like radio emission is associated with 38 of 102 optically known PNe, of which 19 are new detections. Lastly, we present the detection of three foreground radio stars amidst 11 circularly polarized sources, and a few examples of morphologically interesting background radio galaxies from which the radio ring galaxy ESO 029–G034 may represent a new type of radio object.

     
    more » « less
  2. ABSTRACT

    Recent MeerKAT radio continuum observations of the Galactic Centre at 20 cm show a large population of non-thermal radio filaments (NRFs) in the inner few hundred pc of the Galaxy. We have selected a sample of 57 radio sources, mainly compact objects, in the MeerKAT mosaic image that appear to be associated with NRFs. The selected sources are about four times the number of radio point sources associated with filaments than would be expected by random chance. Furthermore, an apparent correlation between bright IR stars and NRFs is inferred from their similar latitude distributions, suggesting that they both co-exist within the same region. To examine if compact radio sources are related to compact IR sources, we have used archival 2MASS, and Spitzer data to make spectral energy distribution of individual stellar sources coincident or close to radio sources. We provide a catalogue of radio and IR sources for future detailed observations to investigate a potential three-way physical association between NRFs, compact radio and IR stellar sources. This association is suggested by models in which NRFs are cometary tails produced by the interaction of a large-scale nuclear outflow with stellar wind bubbles in the Galactic Centre.

     
    more » « less
  3. ABSTRACT

    We carry out a population study of magnetized radio filaments in the Galactic centre using MeerKAT data by focusing on the spacing between the filaments that are grouped. The morphology of a sample of 43 groupings containing 174 magnetized radio filaments are presented. Many grouped filaments show harp-like, fragmented cometary tail-like, or loop-like structures in contrast to many straight filaments running mainly perpendicular to the Galactic plane. There are many striking examples of a single filament splitting into two prongs at a junction, suggestive of a flow of plasma along the filaments. Spatial variations in spectral index, brightness, bending, and sharpening along the filaments indicate that they are evolving on a 105−6-yr time-scale. The mean spacings between parallel filaments in a given grouping peaks at ∼16 arcsec. We argue by modeling that the filaments in a grouping all lie on the same plane and that the groupings are isotropically oriented in 3D space. One candidate for the origin of filamentation is interaction with an obstacle, which could be a compact radio source, before a filament splits and bends into multiple filaments. In this picture, the obstacle or sets the length scale of the separation between the filaments. Another possibility is synchrotron cooling instability occurring in cometary tails formed as a result of the interaction of cosmic ray driven Galactic centre outflow with obstacles such as stellar winds. In this picture, the mean spacing and the mean width of the filaments are expected to be a fraction of a parsec, consistent with observed spacing.

     
    more » « less
  4. Abstract

    Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields, and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.

     
    more » « less
  5. Abstract

    The Time Domain Field (TDF) near the North Ecliptic Pole in JWST’s continuous-viewing zone will become a premier “blank field” for extragalactic science. JWST/NIRCam data in a 16 arcmin2portion of the TDF identify 4.4μm counterparts for 62 of 63 3 GHz sources withS(3 GHz) > 5μJy. The one unidentified radio source may be a lobe of a nearby Seyfert galaxy, or it may be an infrared-faint radio source. The bulk properties of the radio-host galaxies are consistent with those found by previous work: redshifts range from 0.14–4.4 with a median redshift of 1.33. The radio emission arises primarily from star formation in ∼2/3 of the sample and from an active galactic nucleus (AGN) in ∼1/3, but just over half the sample shows evidence for an AGN either in the spectral energy distribution or by radio excess. All but three counterparts are brighter than magnitude 23 AB at 4.4μm, and the exquisite resolution of JWST identifies correct counterparts for sources for which observations with lower angular resolution would misidentify a nearby bright source as the counterpart when the correct one is faint and red. Up to 11% of counterparts might have been unidentified or misidentified absent NIRCam observations.

     
    more » « less
  6. Context. During their lifetimes, galaxy clusters grow through the accretion of matter from the filaments of the large-scale structure and from mergers with other clusters. These mergers release a large amount of energy into the intracluster medium (ICM) through merger shocks and turbulence. These phenomena are associated with the formation of radio sources known as radio relics and radio halos, respectively. Radio relics and halos are unique proxies for studying the complex properties of these dynamically active regions of clusters and the microphysics of the ICM more generally. Aims. Abell 3667 is a spectacular example of a merging system that hosts a large pair of radio relics. Due to its proximity ( z  = 0.0553) and large mass, the system enables the study of these sources to a uniquely high level of detail. However, being located at Dec = −56.8°, the cluster could only be observed with a limited number of radio facilities. Methods. We observed Abell 3667 with MeerKAT as part of the MeerKAT Galaxy Cluster Legacy Survey. We used these data to study the large-scale emission of the cluster, including its polarisation and spectral properties. The results were then compared with simulations. Results. We present the most detailed view of the radio relic system in Abell 3667 to date, with a resolution reaching 3 kpc. The relics are filled with a network of filaments with different spectral and polarisation properties that are likely associated with multiple regions of particle acceleration and local enhancements of the magnetic field. Conversely, the magnetic field in the space between filaments has strengths close to what would be expected in unperturbed regions at the same cluster-centric distance. Comparisons with magnetohydrodynamic cosmological and Lagrangian simulations support the idea of filaments as multiple acceleration sites. Our observations also confirm the presence of an elongated radio halo, developed in the wake of the bullet-like sub-cluster that merged from the south-east. Finally, we associate the process of magnetic draping with a thin polarised radio source surrounding the remnant of the bullet’s cool core. Conclusions. Our observations have unveiled the complexity of the interplay between the thermal and non-thermal components in the most active regions of a merging cluster. Both the intricate internal structure of radio relics and the direct detection of magnetic draping around the merging bullet are powerful examples of the non-trivial magnetic properties of the ICM. Thanks to its sensitivity to polarised radiation, MeerKAT will be transformational in the study of these complex phenomena. 
    more » « less
  7. Context. The Central Molecular Zone (CMZ), a ∼200 pc sized region around the Galactic Centre, is peculiar in that it shows a star formation rate (SFR) that is suppressed with respect to the available dense gas. To study the SFR in the CMZ, young stellar objects (YSOs) can be investigated. Here we present radio observations of 334 2.2 μm infrared sources that have been identified as YSO candidates. Aims: Our goal is to investigate the presence of centimetre wavelength radio continuum counterparts to this sample of YSO candidates which we use to constrain the current SFR in the CMZ. Methods: As part of the GLObal view on STAR formation (GLOSTAR) survey, D-configuration Very Large Array data were obtained for the Galactic Centre, covering −2° < l < 2° and −1° < b < 1° with a frequency coverage of 4-8 GHz. We matched YSOs with radio continuum sources based on selection criteria and classified these radio sources as potential H II regions and determined their physical properties. Results: Of the 334 YSO candidates, we found 35 with radio continuum counterparts. We find that 94 YSOs are associated with dense dust condensations identified in the 870 μm ATLASGAL survey, of which 14 have a GLOSTAR counterpart. Of the 35 YSOs with radio counterparts, 11 are confirmed as H II regions based on their spectral indices and the literature. We estimated their Lyman continuum photon flux in order to estimate the mass of the ionising star. Combining these with known sources, the present-day SFR in the CMZ is calculated to be ∼0.068 M⊙ yr−1, which is ∼6.8% of the Galactic SFR. Candidate YSOs that lack radio counterparts may not have yet evolved to the stage of exhibiting an H II region or, conversely, are older and have dispersed their natal clouds. Since many lack dust emission, the latter is more likely. Our SFR estimate in the CMZ is in agreement with previous estimates in the literature. 
    more » « less
  8. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. 
    more » « less