skip to main content


Search for: All records

Creators/Authors contains: "Cuillandre, Jean-Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the discovery of a giant tidal tail of stars associated with F8D1, the closest known example of an ultra-diffuse galaxy (UDG). F8D1 sits in a region of the sky heavily contaminated by Galactic cirrus and has been poorly studied since its discovery two decades ago. The tidal feature was revealed in a deep map of resolved red giant branch stars constructed using data from our Subaru Hyper Suprime-Cam survey of the M81 Group. It has an average surface brightness of μg ∼ 32 mag arcsec−2 and can be traced for over a degree on the sky (60 kpc at the distance of F8D1) with our current imagery. We revisit the main body properties of F8D1 using deep multiband imagery acquired with MegaCam on CFHT and measure effective radii of 1.7–1.9 kpc, central surface brightnesses of 24.7–25.7 mag, and a stellar mass of ∼7 × 107M⊙. Assuming a symmetric feature on the other side of the galaxy, we calculate that 30–36 per cent of F8D1’s present-day luminosity is contained in the tail. We argue that the most likely origin of F8D1’s disruption is a recent close passage to M81, which would have stripped its gas and quenched its star formation. As the only UDG that has so far been studied to such faint surface brightness depths, the unveiling of F8D1’s tidal disruption is important. It leaves open the possibility that many other UDGs could be the result of similar processes, with the most telling signatures of this lurking below current detection limits.

     
    more » « less
  2. ABSTRACT

    Post-starburst galaxies (PSBs) are defined as having experienced a recent burst of star formation, followed by a prompt truncation in further activity. Identifying the mechanism(s) causing a galaxy to experience a post-starburst phase therefore provides integral insight into the causes of rapid quenching. Galaxy mergers have long been proposed as a possible post-starburst trigger. Effectively testing this hypothesis requires a large spectroscopic galaxy survey to identify the rare PSBs as well as high-quality imaging and robust morphology metrics to identify mergers. We bring together these critical elements by selecting PSBs from the overlap of the Sloan Digital Sky Survey and the Canada–France Imaging Survey and applying a suite of classification methods: non-parametric morphology metrics such as asymmetry and Gini-M20, a convolutional neural network trained to identify post-merger galaxies, and visual classification. This work is therefore the largest and most comprehensive assessment of the merger fraction of PSBs to date. We find that the merger fraction of PSBs ranges from 19 per cent to 42 per cent depending on the merger identification method and details of the PSB sample selection. These merger fractions represent an excess of 3–46× relative to non-PSB control samples. Our results demonstrate that mergers play a significant role in generating PSBs, but that other mechanisms are also required. However, applying our merger identification metrics to known post-mergers in the IllustrisTNG simulation shows that 70 per cent of recent post-mergers (≲200 Myr) would not be detected. Thus, we cannot exclude the possibility that nearly all PSBs have undergone a merger in their recent past.

     
    more » « less
  3. Abstract We present a study of the stellar populations of globular clusters (GCs) in the Virgo Cluster core with a homogeneous spectroscopic catalog of 692 GCs within a major-axis distance R maj = 840 kpc from M87. We investigate radial and azimuthal variations in the mean age, total metallicity, [Fe/H], and α -element abundance of blue (metal-poor) and red (metal-rich) GCs using their co-added spectra. We find that the blue GCs have a steep radial gradient in [Z/H] within R maj = 165 kpc, with roughly equal contributions from [Fe/H] and [ α /Fe], and flat gradients beyond. By contrast, the red GCs show a much shallower gradient in [Z/H], which is entirely driven by [Fe/H]. We use GC-tagged Illustris simulations to demonstrate an accretion scenario where more massive satellites (with more metal- and α -rich GCs) sink further into the central galaxy than less massive ones, and where the gradient flattening occurs because of the low GC occupation fraction of low-mass dwarfs disrupted at larger distances. The dense environment around M87 may also cause the steep [ α /Fe] gradient of the blue GCs, mirroring what is seen in the dwarf galaxy population. The progenitors of red GCs have a narrower mass range than those of blue GCs, which makes their gradients shallower. We also explore spatial inhomogeneity in GC abundances, finding that the red GCs to the northwest of M87 are slightly more metal-rich. Future observations of GC stellar population gradients will be useful diagnostics of halo merger histories. 
    more » « less