skip to main content


Search for: All records

Creators/Authors contains: "Currey, Bryce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Plant functional traits are thought to drive biomass production and biogeochemical cycling in tropical forests, but it remains unclear how nitrogen (N)‐fixing legumes influence the functional traits of neighbouring trees and forest‐wide biomass dynamics. Further, the degree to which effects of N‐fixers are density‐dependent and may depend on stem size and spatial scale remains largely unknown.

    Here, we examine 30 years of stem demography data for ~20,000 trees in a lowland tropical forest in Trinidad that span a wide range of functional traits thought to drive above‐ground biomass (AGB) dynamics.

    These forests show positive but decreasing long‐term net AGB accumulation resulting from constant average productivity but increasing mortality of non‐fixing trees over time. We find that high abundance of N‐fixing trees is associated with compositional shifts in non‐fixer functional traits that confer lower competitive performance and biomass accumulation. Across tree size classes, most interactions between N‐fixers and non‐fixers were negative, density‐dependent, and strongest at smaller spatial scales.

    Synthesis. Overall, our findings suggest that local trait‐based interactions between N‐fixing and non‐fixing trees can influence long‐term carbon accumulation in tropical forests.

     
    more » « less
  3. Abstract

    Vegetation greenness has increased across much of the global land surface over recent decades. This trend is projected to continue—particularly in northern latitudes—but future greening may be constrained by nutrient availability needed for plant carbon (C) assimilation in response to CO2enrichment (eCO2). eCO2impacts foliar chemistry and function, yet the relative strengths of these effects versus climate in driving patterns of vegetative greening remain uncertain. Here we combine satellite measurements of greening with a 135 year record of plant C and nitrogen (N) concentrations and stable isotope ratios (δ13C and δ15N) in the Northern Great Plains (NGP) of North America to examine N constraints on greening. We document significant greening over the past two decades with the highest proportional increases in net greening occurring in the dries and warmest areas. In contrast to the climate dependency of greening, we find spatially uniform increases in leaf‐level intercellular CO2and intrinsic water use efficiency that track rising atmospheric CO2. Despite large spatial variation in greening, we find sustained and climate‐independent declines in foliar N over the last century. Parallel declines in foliar δ15N and increases in C:N ratios point to diminished N availability as the likely cause. The simultaneous increase in greening and decline in foliar N across our study area points to increased N use efficiency (NUE) over the last two decades. However, our results suggest that plant NUE responses are likely insufficient to sustain observed greening trends in NGP grasslands in the future.

     
    more » « less