skip to main content


Search for: All records

Creators/Authors contains: "Curtis, Jason L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Low-mass (≲1.2M) main-sequence stars lose angular momentum over time, leading to a decrease in their magnetic activity. The details of this rotation–activity relation remain poorly understood, however. Using observations of members of the ≈700 Myr old Praesepe and Hyades open clusters, we aim to characterize the rotation–activity relation for different tracers of activity at this age. To complement published data, we obtained new optical spectra for 250 Praesepe stars, new X-ray detections for 10, and new rotation periods for 28. These numbers for Hyads are 131, 23, and 137, respectively. The latter increases the number of Hyads with periods by 50%. We used these data to measure the fractional Hαand X-ray luminosities,LHα/LbolandLX/Lbol, and to calculate Rossby numbersRo. We found that at ≈700 Myr almost all M dwarfs exhibit Hαemission, with binaries having the same overall color–Hαequivalent width distribution as single stars. In theRoLHα/Lbolplane, unsaturated single stars follow a power law with indexβ= −5.9 ± 0.8 forRo> 0.3. In theRoLX/Lbolplane, we see evidence for supersaturation for single stars withRo≲ 0.01, following a power law with indexβsup=0.50.1+0.2, supporting the hypothesis that the coronae of these stars are being centrifugally stripped. We found that the criticalRovalue at which activity saturates is smaller forLX/Lbolthan forLHα/Lbol. Finally, we observed an almost 1:1 relation betweenLHα/LbolandLX/Lbol, suggesting that both the corona and the chromosphere experience similar magnetic heating.

     
    more » « less
  2. Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap. 
    more » « less
  3. Abstract

    Our view of the variety of stellar structures pervading the local Milky Way has been transformed by the application of clustering algorithms to the Gaia catalog. In particular, several stellar streams have been recently discovered that are comprised of hundreds to thousands of stars and span several hundred parsecs. We analyze one such structure, Theia 456, a low-density stellar stream extending nearly 200 pc and 20° across the sky. By supplementing Gaia astrometric data with spectroscopic metallicities from Large Sky Area Multi-Object Fiber Spectroscopic Telescope and photometric rotation periods from the Zwicky Transient Facility and the Transiting Exoplanet Survey Satellite, we establish Theia 456's radial velocity coherence, and we find strong evidence that members of Theia 456 have a common age (≃175 Myr), common dynamical origin, and formed from chemically homogeneous prestellar material ([Fe/H] = −0.07 dex). Unlike well-known stellar streams in the Milky Way, which are in its halo, Theia 456 is firmly part of the thin disk. If our conclusions about Theia 456 can be applied to even a small fraction of the remaining ≃8300 independent structures in the Theia catalog, such low-density stellar streams may be ubiquitous. We comment on the implications this has for the nature of star formation throughout the Galaxy.

     
    more » « less
  4. null (Ed.)