skip to main content


Search for: All records

Creators/Authors contains: "Dai, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Charge transfer is a fundamental interface process that can be harnessed for light detection, photovoltaics, and photosynthesis. Recently, charge transfer was exploited in nanophotonics to alter plasmon polaritons by involving additional non-polaritonic materials to activate the charge transfer. Yet, direct charge transfer between polaritonic materials has not been demonstrated. We report the direct charge transfer in pure polaritonic van der Waals (vdW) heterostructures of α-MoO3/graphene. We extracted the Fermi energy of 0.6 eV for graphene by infrared nano-imaging of charge transfer hyperbolic polaritons in the vdW heterostructure. This unusually high Fermi energy is attributed to the charge transfer between graphene and α-MoO3. Moreover, we have observed charge transfer hyperbolic polaritons in multiple energy–momentum dispersion branches with a wavelength elongation of up to 150%. With the support from the density functional theory calculation, we find that the charge transfer between graphene and α-MoO3, absent in mechanically assembled vdW heterostructures, is attributed to the relatively pristine heterointerface preserved in the epitaxially grown vdW heterostructure. The direct charge transfer and charge transfer hyperbolic polaritons demonstrated in our work hold great promise for developing nano-optical circuits, computational devices, communication systems, and light and energy manipulation devices. 
    more » « less
    Free, publicly-accessible full text available April 12, 2025
  2. ABSTRACT

    We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud. The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ∼7° × 7° and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ∼11 μJy beam−1. The catalogue produced from these images contains 108 330 point sources and 517 compact extended sources. We also describe a UHF (544–1088 MHz) single pointing observation. We report the detection of a new confirmed Supernova Remnant (SNR; MCSNR J0100–7211) with an X-ray magnetar at its centre and 10 new SNR candidates. This is in addition to the detection of 21 previously confirmed SNRs and two previously noted SNR candidates. Our new SNR candidates have typical surface brightness an order of magnitude below those previously known, and on the whole they are larger. The high sensitivity of the MeerKAT survey also enabled us to detect the bright end of the SMC Planetary Nebulae (PNe) sample – point-like radio emission is associated with 38 of 102 optically known PNe, of which 19 are new detections. Lastly, we present the detection of three foreground radio stars amidst 11 circularly polarized sources, and a few examples of morphologically interesting background radio galaxies from which the radio ring galaxy ESO 029–G034 may represent a new type of radio object.

     
    more » « less
  3. Abstract

    Element isotopes are characterized by distinct atomic masses and nuclear spins, which can significantly influence material properties. Notably, however, isotopes in natural materials are homogenously distributed in space. Here, we propose a method to configure material properties by repositioning isotopes in engineered van der Waals (vdW) isotopic heterostructures. We showcase the properties of hexagonal boron nitride (hBN) isotopic heterostructures in engineering confined photon-lattice waves—hyperbolic phonon polaritons. By varying the composition, stacking order, and thicknesses of h10BN and h11BN building blocks, hyperbolic phonon polaritons can be engineered into a variety of energy-momentum dispersions. These confined and tailored polaritons are promising for various nanophotonic and thermal functionalities. Due to the universality and importance of isotopes, our vdW isotope heterostructuring method can be applied to engineer the properties of a broad range of materials.

     
    more » « less
  4. This paper examines the learning experiences of undergraduate students who conducted research as part of a multidisciplinary team. The research project involved five undergraduate students with different backgrounds in engineering as well as in arts and sciences, supervised by four architecture and civil engineering faculty and their three PhD students. The research investigates the behavior of new Tessellated Structural-Architectural (TeSA) systems made of repetitive patterns of tiles (tessellations) that are both aesthetically appealing and load bearing. The undergraduate students worked on three tasks: (1) studying the behavior of TeSA shear walls using small scale earthquake simulator tests, (2) studying the shear capacity of reinforced concrete TeSA tiles, and (3) studying the effect of different shapes and interlocking patterns on the performance of small scale TeSA beams. The undergraduate students used hands-on experiments and laboratory testing to study the performance of 3D printed or prefabricated interlocking tessellations. This paper discusses the technical skills, fundamental concepts, and power skills (communicating, writing, presenting, etc.) that the students obtained, as well as the challenges that they encountered. The students found the process of developing and executing hands-on experiments and analyzing experimental results effective for learning new technologies and fundamental concepts. These concepts included 3D printing methods, natural frequency of a structure, and structural response subjected to a shear force. Peer learning, collaboration between students with different backgrounds, and group discussions with all the team members facilitated a deeper understanding and broader perspective on design, performance, and construction of TeSA systems. The project took place during the COVID-19 pandemic, and the students found working and meeting remotely challenging at times. Proper guidance and timely feedback by the project investigators and their PhD students helped with resolving the challenges. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    We study analytically and numerically the minimizers for the Cahn-Hilliard energy functional with a symmetric quartic double-well potential and under a strong anchoring condition(i.e., the Dirichlet condition) on the boundary of an underlying bounded domain. We show a bifurcation phenomenon determined by the boundary value and a parameter that describes the thickness of a transition layer separating two phases of an underlying system of binary mixtures. For the case that the boundary value is exactly the average of the two pure phases, if the bifurcation parameter is larger than or equal to a critical value, then the minimizer is unique and is exactly the homogeneous state. Otherwise, there are exactly two symmetric minimizers. The critical bifurcation value is inversely proportional to the first eigenvalue of the negative Laplace operator with the zero Dirichlet boundary condition. For a boundary value that is larger (or smaller) than that of the average of the two pure phases, the symmetry is broken and there is only one minimizer. We also obtain the bounds and morphological properties of the minimizers under additional assumptions on the domain.Our analysis utilizes the notion of the Nehari manifold and connects it to the eigenvalue problem for the negative Laplacian with the homogeneous boundary condition. We numerically minimize the functional E by solving the gradient-flow equation of E, i.e., the Allen-Cahn equation, with the designated boundary conditions, and with random initial values. We present our numerical simulations and discuss them in the context of our analytical results. 
    more » « less
  7. Abstract The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium 1 , which is assumed to dominate the total extragalactic dispersion. Although the host-galaxy contributions to the dispersion measure appear to be small for most FRBs 2 , in at least one case there is evidence for an extreme magneto-ionic local environment 3,4 and a compact persistent radio source 5 . Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific-star-formation rate at a redshift of 0.241 ± 0.001. The estimated host-galaxy dispersion measure of approximately $${903}_{-111}^{+72}$$ 903 − 111 + 72 parsecs per cubic centimetre, which is nearly an order of magnitude higher than the average of FRB host galaxies 2,6 , far exceeds the dispersion-measure contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host-galaxy identifications. 
    more » « less
  8. ABSTRACT We report the discovery of J0624–6948, a low-surface brightness radio ring, lying between the Galactic Plane and the large magellanic cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ∼196 arcsec. This source has phenomenological similarities to odd radio circles (ORCs). Significant differences to the known ORCs – a flatter radio spectral index, the lack of a prominent central galaxy as a possible host, and larger apparent size – suggest that J0624–6948 may be a different type of object. We argue that the most plausible explanation for J0624–6948 is an intergalactic supernova remnant due to a star that resided in the LMC outskirts that had undergone a single-degenerate type Ia supernova, and we are seeing its remnant expand into a rarefied, intergalactic environment. We also examine if a massive star or a white dwarf binary ejected from either galaxy could be the supernova progenitor. Finally, we consider several other hypotheses for the nature of the object, including the jets of an active galactic nucleus (30Dor) or the remnant of a nearby stellar super-flare. 
    more » « less