skip to main content


Search for: All records

Creators/Authors contains: "Daneshmand, Vahid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The management of drinking water quality is critical to public health and can benefit from techniques and technologies that support near real-time forecasting of lake and reservoir conditions. The cyberinfrastructure (CI) needed to support forecasting has to overcome multiple challenges, which include: 1) deploying sensors at the reservoir requires the CI to extend to the network’s edge and accommodate devices with constrained network and power; 2) different lakes need different sensor modalities, deployments, and calibrations; hence, the CI needs to be flexible and customizable to accommodate various deployments; and 3) the CI requires to be accessible and usable to various stakeholders (water managers, reservoir operators, and researchers) without barriers to entry. This paper describes the CI underlying FLARE (Forecasting Lake And Reservoir Ecosystems), a novel system co-designed in an interdisciplinary manner between CI and domain scientists to address the above challenges. FLARE integrates R packages that implement the core numerical forecasting (including lake process modeling and data assimilation) with containers, overlay virtual networks, object storage, versioned storage, and event-driven Function-as-a-Service (FaaS) serverless execution. It is a flexible forecasting system that can be deployed in different modalities, including the Manual Mode suitable for end-users’ personal computers and the Workflow Mode ideal for cloud deployment. The paper reports on experimental data and lessons learned from the operational deployment of FLARE in a drinking water supply (Falling Creek Reservoir in Vinton, Virginia, USA). Experiments with a FLARE deployment quantify its edge-to-cloud virtual network performance and serverless execution in OpenWhisk deployments on both XSEDE-Jetstream and the IBM Cloud Functions FaaS system. 
    more » « less
  2. Abstract

    Freshwater ecosystems are experiencing greater variability due to human activities, necessitating new tools to anticipate future water quality. In response, we developed and deployed a real‐time iterative water temperature forecasting system (FLARE—Forecasting Lake And Reservoir Ecosystems). FLARE is composed of water temperature and meteorology sensors that wirelessly stream data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic model and calibrate model parameters, and an ensemble‐based forecasting algorithm to generate forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a drinking water supply, during a 475‐day period encompassing stratified and mixed thermal conditions. Aggregated across this period, root mean square error (RMSE) of daily forecasted water temperatures was 1.13°C at the reservoir's near‐surface (1.0 m) for 7‐day ahead forecasts and 1.62°C for 16‐day ahead forecasts. The RMSE of forecasted water temperatures at the near‐sediments (8.0 m) was 0.87°C for 7‐day forecasts and 1.20°C for 16‐day forecasts. FLARE successfully predicted the onset of fall turnover 4–14 days in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the near‐sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an open‐source system for lake and reservoir water quality forecasting to improve real‐time management.

     
    more » « less