skip to main content


Search for: All records

Creators/Authors contains: "Datta, Shouvik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We revisit the proposal that the ensemble average over free boson CFTs in two dimensions — parameterized by Narain’s moduli space — is dual to an exotic theory of gravity in three dimensions dubbed U(1) gravity. We consider flavored partition functions, where the usual genus g partition function is weighted by Wilson lines coupled to the conserved U(1) currents of these theories. These flavored partition functions obey a heat equation which relates deformations of the Riemann surface moduli to those of the chemical potentials which measure these U(1) charges. This allows us to derive a Siegel-Weil formula which computes the average of these flavored partition functions. The result takes the form of a “sum over geometries”, albeit with modifications relative to the unflavored case. 
    more » « less
  2. null (Ed.)
    A bstract The $$ T\overline{T} $$ T T ¯ deformation can be formulated as a dynamical change of coordinates. We establish and generalize this relation to curved spaces by coupling the undeformed theory to 2d gravity. For curved space the dynamical change of coordinates is supplemented by a dynamical Weyl transformation. We also sharpen the holographic correspondence to cutoff AdS 3 in multiple ways. First, we show that the action of the annular region between the cutoff surface and the boundary of AdS 3 is given precisely by the $$ T\overline{T} $$ T T ¯ operator integrated over either the cutoff surface or the asymptotic boundary. Then we derive dynamical coordinate and Weyl transformations directly from the bulk. Finally, we reproduce the flow equation for the deformed stress tensor from the cutoff geometry. 
    more » « less
  3. null (Ed.)