skip to main content


Search for: All records

Creators/Authors contains: "David, Trevor J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap. 
    more » « less
  2. Abstract

    Although all-sky surveys have led to the discovery of dozens of young planets, little is known about their atmospheres. Here, we present multiwavelength transit data for the super-Neptune sized exoplanet, K2-33b—the youngest (∼10 Myr) transiting exoplanet to date. We combined photometric observations of K2-33 covering a total of 33 transits spanning >2 yr, taken from K2, MEarth, the Hubble Space Telescope (HST), and Spitzer. The transit photometry spanned from the optical to the near-infrared (0.6–4.5μm), enabling us to construct a transmission spectrum of the planet. We find that the optical transit depths are nearly a factor of 2 deeper than those from the near-infrared. This difference holds across multiple data sets taken over years, ruling out issues of data analysis and unconstrained systematics. Surface inhomogeneities on the young star can reproduce some of the difference, but required spot coverage fractions (>60%) are ruled out by the observed stellar spectrum (<20%). We find a better fit to the transmission spectrum using photochemical hazes, which were predicted to be strong in young, moderate-temperature, and large-radius planets like K2-33b. A tholin haze with CO as the dominant gaseous carbon carrier in the atmosphere can reasonably reproduce the data with small or no stellar surface inhomogeneities, consistent with the stellar spectrum. The HST data quality is insufficient for the detection of any molecular features. More observations would be required to fully characterize the hazes and spot properties and confirm the presence of CO suggested by current data.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Early in their lives, planets endure extreme amounts of ionizing radiation from their host stars. For planets with primordial hydrogen and helium-rich envelopes, this can lead to substantial mass loss. Direct observations of atmospheric escape in young planetary systems can help elucidate this critical stage of planetary evolution. In this work, we search for metastable helium absorption—a tracer of tenuous gas in escaping atmospheres—during transits of three planets orbiting the young solar analog V1298 Tau. We characterize the stellar helium line using HET/HPF, and find that it evolves substantially on timescales of days to months. The line is stable on hour-long timescales except for one set of spectra taken during the decay phase of a stellar flare, where absoprtion increased with time. Utilizing a beam-shaping diffuser and a narrowband filter centered on the helium feature, we observe four transits with Palomar/WIRC: two partial transits of planet d ( P = 12.4 days), one partial transit of planet b ( P = 24.1 days), and one full transit of planet c ( P = 8.2 days). We do not detect the transit of planet c, and we find no evidence of excess absorption for planet b, with Δ R b / R ⋆ < 0.019 in our bandpass. We find a tentative absorption signal for planet d with Δ R d / R ⋆ = 0.0205 ± 0.054, but the best-fit model requires a substantial (−100 ± 14 minutes) transit-timing offset on a two-month timescale. Nevertheless, our data suggest that V1298 Tau d may have a high present-day mass-loss rate, making it a priority target for follow-up observations. 
    more » « less
  6. Abstract

    The alignment of planetary orbits with respect to the stellar rotation preserves information on their dynamical histories. Measuring this angle for young planets helps illuminate the mechanisms that create misaligned orbits for older planets, as different processes could operate over timescales ranging from a few megayears to a gigayear. We present spectroscopic transit observations of the young exoplanet V1298 Tau b; we update the age of V1298 Tau to be 28 ± 4 Myr based on Gaia EDR3 measurements. We observed a partial transit with Keck/HIRES and LBT/PEPSI, and detected the radial velocity anomaly due to the Rossiter–McLaughlin effect. V1298 Tau b has a prograde, well-aligned orbit, withλ=410+7deg. By combining the spectroscopically measuredvsiniand the photometrically measured rotation period of the host star we also find that the orbit is aligned in 3D,ψ=87+4deg. Finally, we combine our obliquity constraints with a previous measurement for the interior planet V1298 Tau c to constrain the mutual inclination between the two planets to beimut= 0° ± 19°. This measurements adds to the growing number of well-aligned planets at young ages, hinting that misalignments may be generated over timescales of longer than tens of megayears. The number of measurements, however, is still small, and this population may not be representative of the older planets that have been observed to date. We also present the derivation of the relationship betweenimut,λ, andifor the two planets.

     
    more » « less