skip to main content


Search for: All records

Creators/Authors contains: "DeLucia, Evan H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Abstract

    The Soybean Free Air Concentration Enrichment (SoyFACE) facility is the longest running open-air carbon dioxide and ozone enrichment facility in the world. For over two decades, soybean, maize, and other crops have been exposed to the elevated carbon dioxide and ozone concentrations anticipated for late this century. The facility, located in East Central Illinois, USA, exposes crops to different atmospheric concentrations in replicated octagonal ~280 m2Free Air Concentration Enrichment (FACE) treatment plots. Each FACE plot is paired with an untreated control (ambient) plot. The experiment provides important ground truth data for predicting future crop productivity. Fumigation data from SoyFACE were collected every four seconds throughout each growing season for over two decades. Here, we organize, quality control, and collate 20 years of data to facilitate trend analysis and crop modeling efforts. This paper provides the rationale for and a description of the SoyFACE experiments, along with a summary of the fumigation data and collation process, weather and ambient data collection procedures, and explanations of air pollution metrics and calculations.

     
    more » « less
  3. Abstract

    21st‐century modeling of greenhouse gas (GHG) emissions from bioenergy crops is necessary to quantify the extent to which bioenergy production can mitigate climate change. For over 30 years, the Century‐based biogeochemical models have provided the preeminent framework for belowground carbon and nitrogen cycling in ecosystem and earth system models. While monthly Century and the daily time‐step version of Century (DayCent) have advanced our ability to predict the sustainability of bioenergy crop production, new advances in feedstock generation, and our empirical understanding of sources and sinks of GHGs in soils call for a re‐visitation of DayCent's core model structures. Here, we evaluate current challenges with modeling soil carbon dynamics, trace gas fluxes, and drought and age‐related impacts on bioenergy crop productivity. We propose coupling a microbial process‐based soil organic carbon and nitrogen model with DayCent to improve soil carbon dynamics. We describe recent improvements to DayCent for simulating unique plant structural and physiological attributes of perennial bioenergy grasses. Finally, we propose a method for using machine learning to identify key parameters for simulating N2O emissions. Our efforts are focused on meeting the needs for modeling bioenergy crops; however, many updates reviewed and suggested to DayCent will be broadly applicable to other systems.

     
    more » « less