skip to main content


Search for: All records

Creators/Authors contains: "Deffner, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the computational efficiency and thermodynamic cost of the D-Wave quantum annealer under reverse-annealing with and without pausing. Our demonstration on the D-Wave 2000Qannealer shows that the combination of reverse-annealing and pausing leads to improved computational efficiency while minimizing the thermodynamic cost compared to reverse-annealing alone. Moreover, we find that the magnetic field has a positive impact on the performance of the quantum annealer during reverse-annealing but becomes detrimental when pausing is involved. Our results, which are reproducible, provide strategies for optimizing the performance and energy consumption of quantum annealing systems employing reverse-annealing protocols.

     
    more » « less
  2. We derive a general quantum exchange fluctuation theorem for multipartite systems with arbitrary coupling strengths by taking into account the informational contribution of the back-action of the quantum measurements, which contributes to the increase in the von-Neumann entropy of the quantum system. The resulting second law of thermodynamics is tighter than the conventional Clausius inequality. The derived bound is the quantum mutual information of the conditional thermal state, which is a thermal state conditioned on the initial energy measurement. These results elucidate the role of quantum correlations in the heat exchange between multiple subsystems.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    Quantum mechanics is an inherently linear theory. However, collective effects in many body quantum systems can give rise to effectively nonlinear dynamics. In the present work, we analyze whether and to what extent such nonlinear effects can be exploited to enhance the rate of quantum evolution. To this end, we compute a suitable version of the quantum speed limit for numerical and analytical examples. We find that the quantum speed limit grows with the strength of the nonlinearity, yet it does not trivially scale with the “degree” of nonlinearity. This is numerically demonstrated for the parametric harmonic oscillator obeying Gross-Pitaevskii and Kolomeisky dynamics, and analytically for expanding boxes under Gross-Pitaevskii dynamics.

     
    more » « less
  4. Thermodynamics originated in the need to understand novel technologies developed by the Industrial Revolution. However, over the centuries, the description of engines, refrigerators, thermal accelerators, and heaters has become so abstract that a direct application of the universal statements to real-life devices is everything but straight forward. The recent, rapid development of quantum thermodynamics has taken a similar trajectory, and, e.g., “quantum engines” have become a widely studied concept in theoretical research. However, if the newly unveiled laws of nature are to be useful, we need to write the dictionary that allows us to translate abstract statements of theoretical quantum thermodynamics to physical platforms and working mediums of experimentally realistic scenarios. To assist in this endeavor, this review is dedicated to provide an overview over the proposed and realized quantum thermodynamic devices and to highlight the commonalities and differences of the various physical situations. 
    more » « less
  5. Abstract

    The complete physical understanding of the optimization of the thermodynamic work still is an important open problem in stochastic thermodynamics. We address this issue using the Hamiltonian approach of linear response theory in finite time and weak processes. We derive the Euler–Lagrange equation associated and discuss its main features, illustrating them using the paradigmatic example of driven Brownian motion in overdamped regime. We show that the optimal protocols obtained either coincide, in the appropriate limit, with the exact solutions by stochastic thermodynamics or can be even identical to them, presenting the well-known jumps. However, our approach reveals that jumps at the extremities of the process are a good optimization strategy in the regime of fast but weak processes for any driven system. Additionally, we show that fast-but-weak optimal protocols are time-reversal symmetric, a property that has until now remained hidden in the exact solutions far from equilibrium.

     
    more » « less
  6. While quantum phase transitions share many characteristics with thermodynamic phase transitions, they are also markedly different as they occur at zero temperature. Hence, it is not immediately clear whether tools and frameworks that capture the properties of thermodynamic phase transitions also apply in the quantum case. Concerning the crossing of thermodynamic critical points and describing its non-equilibrium dynamics, the Kibble–Zurek mechanism and linear response theory have been demonstrated to be among the very successful approaches. In the present work, we show that these two approaches are also consistent in the description of quantum phase transitions, and that linear response theory can even inform arguments of the Kibble–Zurek mechanism. In particular, we show that the relaxation time provided by linear response theory gives a rigorous argument for why to identify the “gap” as a relaxation rate, and we verify that the excess work computed from linear response theory exhibits Kibble–Zurek scaling. 
    more » « less