skip to main content


Search for: All records

Creators/Authors contains: "Demorest, P B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the use of bright single pulses from the Crab pulsar to determine separately the dispersion measure (DM) for the Main Pulse and Interpulse components. We develop two approaches using cross-correlation functions (CCFs). The first method computes the CCF of the total intensity of each of the 64 frequency channels with a reference channel and converts the time lag of maximum correlation into a DM. The second method separately computes the CCF between every pair of channels for each individual bright pulse and extracts an average DM from the distribution of all channel-pair DMs. Both methods allow the determination of the DM with a relative uncertainty of better than 10−5and provide robust estimates for the uncertainty of the best-fit value. We find differences in DM between the Main Pulse, the Low Frequency Interpulse, and the High Frequency Interpulse using both methods in a frequency range from 4 to 6 GHz. Earlier observations of the High Frequency Interpulse carried out by Hankins et al. (2016) resulted in DMHFIP–DMMPof 0.010 ± 0.016 pc cm−3. Our results indicate a DMHFIP–DMMPof 0.0127 ± 0.0011 pc cm−3(with DMcompbeing the DM value of the respective emission component), confirming earlier results with an independent method. During our studies we also find a relation between the brightness of single pulses in the High Frequency Interpulse and their DM. We also discuss the application of the developed methods on the identification of substructures in the case of Fast Radio Bursts.

     
    more » « less
  2. Abstract With the Expanded Long Wavelength Array (ELWA) and pulsar binning techniques, we searched for off-pulse emission from PSR B0950+08 at 76 MHz. Previous studies suggest that off-pulse emission can be due to pulsar wind nebulae (PWNe) in younger pulsars. Other studies, such as that done by Basu et al. (2012), propose that in older pulsars this emission extends to some radius that is on the order of the light cylinder radius, and is magnetospheric in origin. Through imaging analysis we conclude that this older pulsar with a spin-down age of 17 Myr has a surrounding PWN, which is unexpected since as a pulsar ages its PWN spectrum is thought to shift from being synchrotron to inverse-Compton-scattering dominated. At 76 MHz, the average flux density of the off-pulse emission is 0.59 ± 0.16 Jy. The off-pulse emission from B0950+08 is ∼ 110 ± 17 arcseconds (0.14 ± 0.02 pc) in size, extending well-beyond the light cylinder diameter and ruling out a magnetospheric origin. Using data from our observation and the surveys VLSSr, TGSS, NVSS, FIRST, and VLASS, we have found that the spectral index for B0950+08 is about −1.36 ± 0.20, while the PWN’s spectral index is steeper than −1.85 ± 0.45. 
    more » « less
  3. Abstract In this work, we present polarization profiles for 23 millisecond pulsars observed at 820 and 1500 MHz with the Green Bank Telescope as part of the NANOGrav pulsar timing array. We calibrate the data using Mueller matrix solutions calculated from observations of PSRs B1929+10 and J1022+1001. We discuss the polarization profiles, which can be used to constrain pulsar emission geometry, and present both the first published radio polarization profiles for nine pulsars and the discovery of very low-intensity average profile components (“microcomponents”) in four pulsars. We obtain the Faraday rotation measures for each pulsar and use them to calculate the Galactic magnetic field parallel to the line of sight for different lines of sight through the interstellar medium. We fit for linear and sinusoidal trends in time in the dispersion measure and Galactic magnetic field and detect magnetic field variations with a period of 1 yr in some pulsars, but overall find that the variations in these parameters are more consistent with a stochastic origin. 
    more » « less
  4. Abstract The Green Bank North Celestial Cap survey is a 350 MHz all-sky survey for pulsars and fast radio transients using the Robert C. Byrd Green Bank Telescope. To date, the survey has discovered over 190 pulsars, including 33 millisecond pulsars and 24 rotating radio transients. Several exotic pulsars have been discovered in the survey, including PSR J1759+5036, a binary pulsar with a 176 ms spin period in an orbit with a period of 2.04 days, an eccentricity of 0.3, and a projected semi-major axis of 6.8 light seconds. Using seven years of timing data, we are able to measure one post–Keplerian parameter, advance of periastron, which has allowed us to constrain the total system mass to 2.62 ± 0.03 M ⊙ . This constraint, along with the spin period and orbital parameters, suggests that this is a double neutron star system, although we cannot entirely rule out a pulsar-white dwarf binary. This pulsar is only detectable in roughly 45% of observations, most likely due to scintillation. However, additional observations are required to determine whether there may be other contributing effects. 
    more » « less
  5. ABSTRACT

    The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.

     
    more » « less
  6. ABSTRACT

    We searched for an isotropic stochastic gravitational wave background in the second data release of the International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns in North America, Europe, and Australia. In our reference search for a power-law strain spectrum of the form $h_c = A(f/1\, \mathrm{yr}^{-1})^{\alpha }$, we found strong evidence for a spectrally similar low-frequency stochastic process of amplitude $A = 3.8^{+6.3}_{-2.5}\times 10^{-15}$ and spectral index α = −0.5 ± 0.5, where the uncertainties represent 95 per cent credible regions, using information from the auto- and cross-correlation terms between the pulsars in the array. For a spectral index of α = −2/3, as expected from a population of inspiralling supermassive black hole binaries, the recovered amplitude is $A = 2.8^{+1.2}_{-0.8}\times 10^{-15}$. None the less, no significant evidence of the Hellings–Downs correlations that would indicate a gravitational-wave origin was found. We also analysed the constituent data from the individual pulsar timing arrays in a consistent way, and clearly demonstrate that the combined international data set is more sensitive. Furthermore, we demonstrate that this combined data set produces comparable constraints to recent single-array data sets which have more data than the constituent parts of the combination. Future international data releases will deliver increased sensitivity to gravitational wave radiation, and significantly increase the detection probability.

     
    more » « less