skip to main content


Search for: All records

Creators/Authors contains: "Deng, L-C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We use the conjugate angle of radial action (θR), the best representation of the orbital phase, to explore the “midplane,” “north branch,” “south branch,” and “Monoceros area” disk structures that were previously revealed in the LAMOST K giants. The former three substructures, identified by their 3D kinematical distributions, have been shown to be projections of the phase space spiral (resulting from nonequilibrium phase mixing). In this work, we find that all of these substructures associated with the phase spiral show high aggregation in conjugate angle phase space, indicating that the clumping in conjugate angle space is a feature of ongoing, incomplete phase mixing. We do not find theZVZphase spiral located in the “Monoceros area,” but we do find a very highly concentrated substructure in the quadrant of conjugate angle space with the orbital phase from the apocenter to the guiding radius. The existence of the clump in conjugate angle space provides a complementary way to connect the “Monoceros area” with the direct response to a perturbation from a significant gravitationally interactive event. Using test particle simulations, we show that these features are analogous to disturbances caused by the impact of the last passage of the Sagittarius dwarf spheroidal galaxy.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. null (Ed.)
  3. null (Ed.)
    ABSTRACT We perform analysis of the 3D kinematics of Milky Way disc stars in mono-age populations. We focus on stars between Galactocentric distances of R = 6 and 14  kpc, selected from the combined LAMOST Data Release 4 (DR4) red clump giant stars and Gaia DR2 proper motion catalogue. We confirm the 3D asymmetrical motions of recent works and provide time tagging of the Galactic outer disc asymmetrical motions near the anticentre direction out to Galactocentric distances of 14 kpc. Radial Galactocentric motions reach values up to 10 km s−1, depending on the age of the population, and present a north–south asymmetry in the region corresponding to density and velocity substructures that were sensitive to the perturbations in the early 6  Gyr. After that time, the disc stars in this asymmetrical structure have become kinematically hotter, and are thus not sensitive to perturbations, and we find the structure is a relatively younger population. With quantitative analysis, we find stars both above and below the plane at R ≳ 9 kpc that exhibit bending mode motions of which the sensitive duration is around 8  Gyr. We speculate that the in-plane asymmetries might not be mainly caused by a fast rotating bar, intrinsically elliptical outer disc, secular expansion of the disc, or streams. Spiral arm dynamics, out-of-equilibrium models, minor mergers or others are important contributors. Vertical motions might be dominated by bending and breathing modes induced by complicated inner or external perturbers. It is likely that many of these mechanisms are coupled together. 
    more » « less