skip to main content


Search for: All records

Creators/Authors contains: "Denlinger, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recently, kagome lattice materials have emerged as a new model material platform for discovering and engineering novel quantum phases of matter. In this work, we elucidate the driving mechanism of the$$\sqrt{{{3}}}$$3×$$\sqrt{{{3}}}$$3charge order in a newly discovered kagome metal ScV6Sn6. Through multimodal investigations combining angle-resolved photoemission spectroscopy, phonon dispersion calculations, and phase diagram study, we identify the central role of unstable planar Sn and Sc phonon modes, while the electronic instability and van Hove singularities originating from the V kagome lattice have a marginal influence. Our results highlight that the$$\sqrt{{{3}}}$$3×$$\sqrt{{{3}}}$$3charge order in ScV6Sn6is fundamentally distinguished from the electronically driven 2 × 2 charge order in the canonical kagome system AV3Sb5, uncovering a new mechanism to induce symmetry-breaking phase transition in kagome lattice materials.

     
    more » « less
  2. Abstract The interaction between strong correlation and Berry curvature is an open territory of in the field of quantum materials. Here we report large anomalous Hall conductivity in a Kondo lattice ferromagnet USbTe which is dominated by intrinsic Berry curvature at low temperatures. However, the Berry curvature induced anomalous Hall effect does not follow the scaling relation derived from Fermi liquid theory. The onset of the Berry curvature contribution coincides with the Kondo coherent temperature. Combined with ARPES measurement and DMFT calculations, this strongly indicates that Berry curvature is hosted by the flat bands induced by Kondo hybridization at the Fermi level. Our results demonstrate that the Kondo coherence of the flat bands has a dramatic influence on the low temperature physical properties associated with the Berry curvature, calling for new theories of scaling relations of anomalous Hall effect to account for the interaction between strong correlation and Berry curvature. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently,TaAs2, a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the (201) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface ofTaAs2are trivial bulk bands. The absence of symmetry-protected surface state on the (201) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR ofTaAs2.

     
    more » « less
  4. Abstract Kagome materials have become solid grounds to study the interplay among geometry, topology, correlation, and magnetism. Recently, niobium halide semiconductors Nb 3 X 8 ( X  = Cl, Br, I) have been predicted to be two-dimensional magnets and these materials are also interesting for their breathing kagome geometry. However, experimental electronic structure studies of these promising materials are still lacking. Here, we report the spectroscopic evidence of flat and weakly dispersing bands in breathing-kagome semiconductor Nb 3 I 8 around 500 meV binding energy, which is well supported by our first-principles calculations. These bands originate from the breathing kagome lattice of niobium atoms and have niobium d -orbital character. They are found to be sensitive to the polarization of the incident photon beam. Our study provides insight into the electronic structure and flat band topology in an exfoliable kagome semiconductor, thereby providing an important platform to understand the interaction of geometry and electron correlations in two-dimensional materials. 
    more » « less
  5. Abstract Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb 4 , arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb 4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries. 
    more » « less
  6. Abstract Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe 1− x Se x . We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized d x y orbital with the remaining itinerant iron 3 d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in d x y as Se concentration is reduced. 
    more » « less