skip to main content


Search for: All records

Creators/Authors contains: "Desai, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In Machine learning (ML) and deep learning (DL), hyperparameter tuning is the process of selecting the combination of optimal hyperparameters that give the best performance. Thus, the behavior of some machine learning (ML) and deep learning (DL) algorithms largely depend on their hyperparameters. While there has been a rapid growth in the application of machine learning (ML) and deep learning (DL) algorithms to Additive manufacturing (AM) techniques, little to no attention has been paid to carefully selecting and optimizing the hyperparameters of these algorithms in order to investigate their influence and achieve the best possible model performance. In this work, we demonstrate the effect of a grid search hyperparameter tuning technique on a Multilayer perceptron (MLP) model using datasets obtained from a Fused Filament Fabrication (FFF) AM process. The FFF dataset was extracted from the MakerBot MethodX 3D printer using internet of things (IoT) sensors. Three (3) hyperparameters were considered – the number of neurons in the hidden layer, learning rate, and the number of epochs. In addition, two different train-to-test ratios were considered to investigate their effects on the AM process data. The dataset consisted of five (5) dominant input parameters which include layer thickness, build orientation, extrusion temperature, building temperature, and print speed and three (3) output parameters: dimension accuracy, porosity, and tensile strength. RMSE, and the computational time, CT, were both selected as the hyperparameter performance metrics. The experimental results reveal the optimal configuration of hyperparameters that contributed to the best performance of the MLP model. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Three-dimensional (3D) printing is implemented for surface modification of titanium alloy substrates with multilayered biofunctional polymeric coatings. Poly(lactic-co- glycolic) acid (PLGA) and polycaprolactone (PCL) polymers were embedded with amorphous calcium phosphate (ACP) and vancomycin (VA) therapeutic agents to promote osseointegration and antibacterial activity, respectively. PCL coatings revealed a uniform deposition pattern of the ACP-laden formulation and enhanced cell adhesion on the titanium alloy substrates as compared to the PLGA coatings. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed a nanocomposite structure of ACP particles showing strong binding with the polymers. Cell viability data showed comparable MC3T3 osteoblast proliferation on polymeric coatings as equivalent to positive controls. In vitro live/dead assessment indicated higher cell attachments for 10 layers (burst release of ACP) as compared to 20 layers (steady release) for PCL coatings. The PCL coatings loaded with the antibacterial drug VA displayed a tunable release kinetics profile based on the multilayered design and drug content of the coatings. Moreover, the concentration of active VA released from the coatings was above the minimum inhibitory concentration and minimum bactericidal concentration, demonstrating its effectiveness against Staphylococcus aureus bacterial strain. This research provides a basis for developing antibacterial biocompatible coatings to promote osseointegration of orthopedic implants. 
    more » « less
  3. We present a measurement of the cross-correlation between theMagLimgalaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. ABSTRACT

    Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.

     
    more » « less
  5. Radiation therapy is a powerful and effective treatment which targets malignant tumors. Thus, improvements in radiation therapy devices such as compensators can have an immediate impact on the treatment of cancer patients. This paper investigates the design and manufacturing of customized radiation modulation devices. This research proposes a thin-walled device design that can use recyclable fillable media such as water. This approach has several advantages including localized radiation exposure, eco-friendly design, and lower fabrication costs. The Fused Deposition Modeling (FDM) technique was used to develop a hollow bottle-like electron bolus with higher precision (μm resolution). The radiation modulation properties of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) materials were investigated. The compensator devices were subjected to high radiation doses and mechanical loads to check for dimensional deformations which can impact subsequent radiation profiles. Our findings showed that both ABS and PC materials had superior radiation tolerance as evaluated by the dimensional deviation analysis. Further, the devices had adequate mechanical properties as confirmed by deformation tests and finite element analysis. This paper provides a framework for the design and manufacture of custom compensators for radiation therapy. 
    more » « less
  6. Nanoimprinting of polymers lays the foundation for several electronic and biomedical devices. Process parameter optimization have been conducted using thermal nanoimprint (T-NIL) experimentation. However, the underlying deformation mechanism of specific polymers under varying process condition needs further exploration. This research investigates the deformation behavior of poly acrylic acid (PAA) as a thermoplastic resist material for the T-NIL process. Molecular dynamics modeling was conducted on a PAA substrate imprinted with a rigid, spherical indenter. The effect of indenter size, force, and imprinting duration on the indentation depth, penetration depth, recovery depth, and recovery percentage of the polymer was evaluated. The results show that the largest indenter, regardless of force has the most significant impact on deformation behavior. The results of this research lay foundation for explaining the effect of several T-NIL process parameters on virgin PAA thermoplastic resist material. 
    more » « less
  7. Abstract

    We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing.

     
    more » « less
  8. Abstract

    We address the problem of optimally identifying all kilonovae detected via gravitational-wave emission in the upcoming LIGO/Virgo/KAGRA observing run, O4, which is expected to be sensitive to a factor of ∼7 more binary neutron star (BNS) alerts than previously. Electromagnetic follow-up of all but the brightest of these new events will require >1 m telescopes, for which limited time is available. We present an optimized observing strategy for the DECam during O4. We base our study on simulations of gravitational-wave events expected for O4 and wide-prior kilonova simulations. We derive the detectabilities of events for realistic observing conditions. We optimize our strategy for confirming a kilonova while minimizing telescope time. For a wide range of kilonova parameters, corresponding to a fainter kilonova compared to GW170817/AT 2017gfo, we find that, with this optimal strategy, the discovery probability for electromagnetic counterparts with the DECam is ∼80% at the nominal BNS gravitational-wave detection limit for O4 (190 Mpc), which corresponds to an ∼30% improvement compared to the strategy adopted during the previous observing run. For more distant events (∼330 Mpc), we reach an ∼60% probability of detection, a factor of ∼2 increase. For a brighter kilonova model dominated by the blue component that reproduces the observations of GW170817/AT 2017gfo, we find that we can reach ∼90% probability of detection out to 330 Mpc, representing an increase of ∼20%, while also reducing the total telescope time required to follow up events by ∼20%.

     
    more » « less
  9. ABSTRACT

    Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.

     
    more » « less
  10. null (Ed.)