skip to main content


Search for: All records

Creators/Authors contains: "Devereaux, Thomas P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states. 
    more » « less
    Free, publicly-accessible full text available September 25, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. Ultrafast characterization and control of many-body interactions and elementary excitations are critical to understanding and manipulating emergent phenomena in strongly correlated systems. In particular, spin interaction plays an important role in unconventional superconductivity, but efficient tools for probing spin dynamics, especially out of equilibrium, are still lacking. To address this question, we develop a theory for nonresonant time-resolved Raman scattering, which can be a generic and powerful tool for nonequilibrium studies. We also use exact diagonalization to simulate the pump-probe dynamics of correlated electrons in the square-lattice single-band Hubbard model. Different ultrafast processes are shown to exist in the time-resolved Raman spectra and dominate under different pump conditions. For high-frequency and off-resonance pumps, we show that the Floquet theory works well in capturing the softening of bimagnon excitation. By comparing the Stokes and anti-Stokes spectra, we also show that effective heating dominates at small pump fluences, while a coherent many-body effect starts to take over at larger pump amplitudes and frequencies on resonance to the Mott gap. Time-resolved Raman scattering thereby provides the platform to explore different ultrafast processes and design material properties out of equilibrium. 
    more » « less
  6. Abstract

    We investigate high‐valent oxygen redox in the positive Na‐ion electrode P2‐Na0.67−x[Fe0.5Mn0.5]O2(NMF) where Fe is partially substituted with Cu (P2‐Na0.67−x[Mn0.66Fe0.20Cu0.14]O2, NMFC) or Ni (P2‐Na0.67−x[Mn0.65Fe0.20Ni0.15]O2, NMFN). From combined analysis of resonant inelastic X‐ray scattering and X‐ray near‐edge structure with electrochemical voltage hysteresis and X‐ray pair distribution function profiles, we correlate structural disorder with high‐valent oxygen redox and its improvement by Ni or Cu substitution. Density of states calculations elaborate considerable anionic redox in NMF and NMFC without the widely accepted requirement of an A‐O‐A′ local configuration in the pristine materials (where A=Na and A′=Li, Mg, vacancy, etc.). We also show that the Jahn–Teller nature of Fe4+and the stabilization mechanism of anionic redox could determine the extent of structural disorder in the materials. These findings shed light on the design principles in TM and anion redox for positive electrodes to improve the performance of Na‐ion batteries.

     
    more » « less