skip to main content


Search for: All records

Creators/Authors contains: "Dinniman, M. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over the Ross Sea shelf, annual primary production is limited by dissolved iron (DFe) supply. Here, a major source of DFe to surface waters is thought to be vertical resupply from the benthos, which is assumed most prevalent during winter months when katabatic winds drive sea ice formation and convective overturn in coastal polynyas, although the impact of these processes on water‐column DFe distributions has not been previously documented. We collected hydrographic data and water‐column samples for trace metals analysis in the Terra Nova Bay and Ross Ice Shelf polynyas during April–May 2017 (late austral fall). In the Terra Nova Bay polynya, we observed intense katabatic wind events, and surface mixed layer depths varied from ∼250 to ∼600 m over lateral distances <10 km; there vertical mixing was just starting to excavate the dense, iron‐rich Shelf Waters, and there was also evidence of DFe inputs at shallower depths in the water column. In the Ross Ice Shelf polynya, wind speeds were lower, mixed layers were <300 m deep, and DFe distributions were similar to previous, late‐summer observations, with concentrations elevated near the seafloor. Corresponding measurements of dissolved manganese and zinc, and particulate iron, manganese, and aluminum, suggest that deep DFe maxima and some mid‐depth DFe maxima primarily reflect sedimentary inputs, rather than remineralization. Our data and model simulations imply that vertical resupply of DFe in the Ross Sea occurs mainly during mid‐late winter, and may be particularly sensitive to changes in the timing and extent of sea ice production.

     
    more » « less
  2. Abstract

    Diel vertical migration (DVM) is common in zooplankton populations worldwide. Every day, zooplankton leave the productive surface ocean and migrate to deepwater to avoid visual predators and return to the surface at night to feed. This behavior may also help retain migrating zooplankton in biological hotspots. Compared to fast and variable surface currents, deep ocean currents are sluggish, and can be more consistent. The time spent in the subsurface layer is driven by day length and the depth of the surface mixed layer. A subsurface, recirculating eddy has recently been described in Palmer Deep Canyon (PDC), a submarine canyon in a biological hotspot located adjacent to the West Antarctic Peninsula. Circulation model simulations have shown that residence times of neutrally buoyant particles increase with depth within this feature. We hypothesize that DVM into the subsurface eddy increases local retention of migrating zooplankton in this feature and that shallow mixed layers and longer days increase residence times. We demonstrate that simulated vertically migrating zooplankton can have residence times on the order of 30 days over the canyon, which is five times greater than residence times of near‐surface, nonmigrating zooplankton within PDC and other adjacent coastal regions. The potential interaction of zooplankton with this subsurface feature may be important to the establishment of the biological hotspot around PDC by retaining food resources in the region. Acoustic field observations confirm the presence of vertical migrators in this region, suggesting that zooplankton retention due to the subsurface eddy is feasible.

     
    more » « less
  3. Abstract

    Palmer Deep Canyon is one of the biological hotspots associated with deep bathymetric features along the West Antarctic Peninsula. The upwelling of nutrient‐rich Upper Circumpolar Deep Water to the surface mixed layer in the submarine canyon has been hypothesized to drive increased phytoplankton biomass, attracting krill, penguins and other top predators to the area. However, observations in Palmer Deep Canyon lack a clearin‐situupwelling signal, laboratory experiments do not illustrate a physiological response by phytoplankton to Upper Circumpolar Deep Water, and surface residence times are too short for phytoplankton populations to reasonably respond to any locally upwelled nutrients. This suggests that local upwelling may not be the mechanism that links Palmer Deep Canyon to increased biological activity. Previous observations of isopycnal doming within the canyon suggested that a subsurface recirculating feature may be present. Here, usingin‐situmeasurements and a circulation model, we demonstrate that the presence of a recirculating eddy may contribute to the maintenance of the biological hotspot by increasing residence times at depth and retaining a distinct layer of biological particles. Neutrally buoyant particle simulations showed that residence times increase to ∼175 days at 150 m within the canyon during the austral summer.In‐situparticle scattering, flow cytometry, and water samples from within the subsurface eddy suggest that retained particles are detrital in nature. Our results suggest that this seasonal, retentive feature in Palmer Deep Canyon is important to the retention of biological material and may contribute to the maintenance of this hotspot.

     
    more » « less
  4. Abstract

    The Amundsen Sea Polynya (ASP) is distinguished by having the highest net primary production per unit area in the coastal Antarctic. Recent studies have related this high productivity to the presence of fast‐melting ice shelves, but the mechanisms involved are not well understood. In this study we describe the first numerical model of the ASP to represent explicitly the ocean‐ice interactions, nitrogen and iron cycles, and the coastal circulation at high resolution. The study focuses on the seasonal cycle of iron and carbon, and the results are broadly consistent with field observations collected during the summer of 2010–2011. The simulated biogeochemical cycle is strongly controlled by light availability(dictated by sea ice, phytoplankton self‐shading, and variable sunlight). The micronutrient iron exhibits strong seasonality, where scavenging by biogenic particles and remineralization play large compensating roles. Lateral fluxes of iron are also important to the iron budget, and our results confirm the key role played by inputs of dissolved iron from the buoyancy‐driven circulation of melting ice shelf cavities (the “meltwater pump”). The model suggests that westward flowing coastal circulation plays two important roles: it provides additional iron to the ASP and it collects particulate organic matter generated by the bloom and transports it to the west of the ASP. As a result, maps of vertical particulate organic matter fluxes show highest fluxes in shelf regions located west of the productive central ASP. Overall, these model results improve our mechanistic understanding of the ASP bloom, while suggesting testable hypotheses for future field efforts.

     
    more » « less