skip to main content


Search for: All records

Creators/Authors contains: "Do, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the third discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, the COCONUTS-3 system, composed of the young M5 primary star UCAC4 374−046899 and the very red L6 dwarf WISEA J081322.19−152203.2. These two objects have a projected separation of 61 ′ ′ (1891 au) and are physically associated given their common proper motions and estimated distances. The primary star, COCONUTS-3A, has a mass of 0.123 ± 0.006 M ⊙ , and we estimate its age as 100 Myr to 1 Gyr based on its stellar activity (via H α and X-ray emission), kinematics, and spectrophotometric properties. We derive its bulk metallicity as 0.21 ± 0.07 dex using empirical calibrations established by older and higher-gravity M dwarfs and find that this [Fe/H] could be slightly underestimated according to PHOENIX models given COCONUTS-3A’s younger age. The companion, COCONUTS-3B, has a near-infrared spectral type of L6 ± 1 int-g , and we infer physical properties of T eff = 1362 − 73 + 48 K, log ( g ) = 4.96 − 0.34 + 0.15 dex, R = 1.03 − 0.06 + 0.12 R Jup , and M = 39 − 18 + 11 M Jup using its bolometric luminosity, its host star’s age, and hot-start evolution models. We construct cloudy atmospheric model spectra at the evolution-based physical parameters and compare them to COCONUTS-3B’s spectrophotometry. We find that this companion possesses ample condensate clouds in its photosphere ( f sed = 1) with the data–model discrepancies likely due to the models using an older version of the opacity database. Compared to field-age L6 dwarfs, COCONUTS-3B has fainter absolute magnitudes and a 120 K cooler T eff . Also, the J − K color of this companion is among the reddest for ultracool benchmarks with ages older than a few hundred megayears. COCONUTS-3 likely formed in the same fashion as stellar binaries given the companion-to-host mass ratio of 0.3 and represents a valuable benchmark to quantify the systematics of substellar model atmospheres. 
    more » « less
  2. ABSTRACT

    We present the discovery that ATLAS18mlw was a tidal disruption event (TDE) in the galaxy WISEA J073544.83+663717.3, at a luminosity distance of 334 Mpc. Initially discovered by the Asteroid Terrestrial Impact Last Alert System (ATLAS) on 2018 March 17.3, the TDE nature of the transient was uncovered only recently with the re-reduction of a SuperNova Integral Field Spectrograph (SNIFS) spectrum. This spectrum, taken by the Spectral Classification of Astronomical Transients (SCAT) survey, shows a strong blue continuum and a broad H α emission line. Here, we present roughly 6 yr of optical survey photometry beginning before the TDE to constrain active galactic nucleus activity, optical spectroscopy of the transient, and a detailed study of the host galaxy properties through analysis of archival photometry and a host spectrum. ATLAS18mlw was detected in ground-based light curves for roughly 2 months. From a blackbody fit to the transient spectrum and bolometric correction of the optical light curve, we conclude that ATLAS18mlw is best explained by a low-luminosity TDE with a peak luminosity of log(L [erg s−1]) = 43.5 ± 0.2. The TDE classification is further supported by the quiescent Balmer strong nature of the host galaxy. We also calculated the TDE decline rate from the bolometric light curve and find ΔL40 = −0.7 ± 0.2 dex, making ATLAS18mlw a member of the growing class of ‘faint and fast’ TDEs with low peak luminosities and fast decline rates.

     
    more » « less
  3. Abstract

    Using ultraviolet (UV) light curves, we constrain the circumstellar environments of 1080 Type Ia supernovae (SNe Ia) withinz< 0.5 from archival Galaxy Evolution Explorer (GALEX) observations. All SNe Ia are required to have pre- and post-explosion GALEX observations to ensure adequate subtraction of the host-galaxy flux. Using the late-time GALEX observations, we look for the UV excess expected from any interaction between the SN ejecta and circumstellar material (CSM). Four SNe Ia are detected near maximum light, and we compare the GALEX photometry to archival data. However, we find that none of our targets show convincing evidence of CSM interaction. A recent Hubble Space Telescope (HST) survey estimates that ∼6% of SNe Ia may interact with distant CSM, but statistical inferences are complicated by the small sample size and selection effects. By injecting model light curves into our data and then recovering them, we constrain a broad range of CSM interactions based on the CSM interaction start time and the maximum luminosity. Combining our GALEX nondetections with the HST results, we constrain occurrence of late-onset CSM interaction among SNe Ia with moderate CSM interaction, similar to that observed in PTF11kx, tofCSM≲ 5.1% between 0 and 500 days after discovery and ≲2.7% between 500 and 1000 days after discovery at 90% confidence. For weaker CSM interactions similar to SN 2015cp, we obtain limits of ≲16% and ≲4.8%, respectively, for the same time ranges.

     
    more » « less
  4. Abstract

    We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining Type Ia supernova (SN Ia) in NGC 1784 (D≈ 31 Mpc), from <1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion, which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess that is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived Ci1.0693μm feature that persists until 5 days post-maximum. We also detect Ciiλ6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic data set of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes that produce faint SNe Ia.

     
    more » « less
  5. Abstract

    We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from −30 to 275 days relative to the peak UV/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite data, we determine that the ANT began to brighten on 2020 June 22.8 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 30 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity ofL= (3.15 ± 0.04) × 1043erg s−1. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude toLx∼ 1.5 × 1042erg s−1and then slowly declined over time. The X-ray emission is well fit by a power law with a photon index of Γ ∼ 2.3–2.6. Both the optical and near-infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events and active galactic nuclei, it cannot be definitively classified with current data.

     
    more » « less
  6. null (Ed.)