skip to main content


Search for: All records

Creators/Authors contains: "Doan, T.N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cross-domain collaborative filtering recommenders exploit data from other domains (e.g., movie ratings) to predict users’ interests in a different target domain (e.g., suggest music). Most current cross-domain recommenders focus on modeling user ratings but pay limited attention to user reviews. Additionally, due to the complexity of these recommender systems, they cannot provide any information to users to support user decisions. To address these challenges, we propose Deep Hybrid Cross Domain (DHCD) model, a cross-domain neural framework, that can simultaneously predict user ratings, and provide useful information to strengthen the suggestions and support user decision across multiple domains. Specifically, DHCD enhances the predicted ratings by jointly modeling two crucial facets of users’ product assessment: ratings and reviews. To support decisions, it models and provides natural review-like sentences across domains according to user interests and item features. This model is robust in integrating user rating and review information from more than two domains. Our extensive experiments show that DHCD can significantly outperform advanced baselines in rating predictions and review generation tasks. For rating prediction tasks, it outperforms cross-domain and single-domain collaborative filtering as well as hybrid recommender systems. Furthermore, our review generation experiments suggest an improved perplexity score and transfer of review information in DHCD. 
    more » « less
  2. One of the essential problems, in educational data mining, is to predict students' performance on future learning materials, such as problems, assignments, and quizzes. Pioneer algorithms for predicting student performance mostly rely on two sources of information: students' past performance, and learning materials' domain knowledge model. The domain knowledge model, traditionally curated by domain experts maps learning materials to concepts, topics, or knowledge components that are presented in them. However, creating a domain model by manually labeling the learning material can be a difficult and time-consuming task. In this paper, we propose a tensor factorization model for student performance prediction that does not rely on a predefined domain model. Our proposed algorithm models student knowledge as a soft membership of latent concepts. It also represents the knowledge acquisition process with an added rank-based constraint in the tensor factorization objective function. Our experiments show that the proposed model outperforms state-of-the-art algorithms in predicting student performance in two real-world datasets, and is robust to hyper-parameters. 
    more » « less