skip to main content


Search for: All records

Creators/Authors contains: "Dolce, Michele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the long‐time properties of the two‐dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles‐Howard stability condition on the Richardson number, we prove that the system experiences a shear‐buoyancy instability: the density variation and velocity undergo an inviscid damping while the vorticity and density gradient grow as . The result holds at least until the natural, nonlinear timescale . Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles‐Howard spectral stability condition; (B) a variation of the Fourier time‐dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.

     
    more » « less
  2. Abstract

    We consider the Kuramoto–Sivashinsky equation (KSE) on the two-dimensional torus in the presence of advection by a given background shear flow. Under the assumption that the shear has a finite number of critical points and there are linearly growing modes only in the direction of the shear, we prove global existence of solutions with data in$$L^2$$L2, using a bootstrap argument. The initial data can be taken arbitrarily large.

     
    more » « less