skip to main content


Search for: All records

Creators/Authors contains: "Dou, Hongyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Highly promising performance for future computing applications is achieved based on a new materials design. 
    more » « less
    Free, publicly-accessible full text available June 23, 2024
  3. Metamaterials present great potential in the applications of solar cells and nanophotonics, such as super lenses and other meta devices, owing to their superior optical properties. In particular, hyperbolic metamaterials (HMMs) with exceptional optical anisotropy offer improved manipulation of light–matter interactions as well as a divergence in the density of states and thus show enhanced performances in related fields. Recently, the emerging field of oxide–metal vertically aligned nanocomposites (VANs) suggests a new approach to realize HMMs with flexible microstructural modulations. In this work, a new oxide–metal metamaterial system, CeO 2 –Au, has been demonstrated with variable Au phase morphologies from nanoparticle-in-matrix (PIM), nanoantenna-in-matrix, to VAN. The effective morphology tuning through deposition background pressure, and the corresponding highly tunable optical performance of three distinctive morphologies, were systematically explored and analyzed. A hyperbolic dispersion at high wavelength has been confirmed in the nano-antenna CeO 2 –Au thin film, proving this system as a promising candidate for HMM applications. More interestingly, a new and abnormal in-plane epitaxy of Au nanopillars following the large mismatched CeO 2 matrix instead of the well-matched SrTiO 3 substrate, was discovered. Additionally, the tilting angle of Au nanopillars, α , has been found to be a quantitative measure of the balance between kinetics and thermodynamics during the depositions of VANs. All these findings provide valuable information in the understanding of the VAN formation mechanisms and related morphology tuning. 
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  4. Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and microstructures that could not achieve using equilibrium techniques, and thus lead to novel physical properties. In this work, a unique three-phase system composed of BaTiO3 (BTO), with two immiscible metals, Au and Fe, is demonstrated. By adjusting the deposition laser frequency from 2 Hz to 10 Hz, the phase and morphology of Au and Fe nanoparticles in BTO matrix vary from separated Au and Fe nanoparticles to well-mixed Au-Fe alloy pillars. This is attributed to the non-equilibrium process of PLD and the limited diffusion under high laser frequency (e.g., 10 Hz). The magnetic and optical properties are effectively tuned based on the morphology variation. This work demonstrates the stabilization of non-equilibrium alloy structures in the VAN form and allows for the exploration of new non-equilibrium materials systems and their properties that could not be easily achieved through traditional equilibrium methods. 
    more » « less
  5. We report the dielectric Properties of HfO 2 -based films in the optical–high frequency range. The demonstrated tunability of the optical dielectric constant of HfO 2 -based compounds is of great relevance for optoelectronic applications, e.g., high-refractive index dielectrics for nanoantenna and optical coatings for electronic displays. Since the optical dielectric constant of HfO 2 is determined by the electronic structure and its crystal environment, we tune the physical properties of HfO 2 films on MgO by adding different dopants. In this work, we aim to determine the influence of doping together with the resulting crystal structure on the optical dielectric constant. Hence, we studied 20 mol. % Y-doped HfO 2 (HYO), Hf 0.5 Zr 0.5 O 2 (HZO), and Hf 0.5 Ce 0.5 O 2 (HCO). Among the dopants, Y 2 O 3 has the lowest, ZrO 2 an intermediate, and CeO 2 the highest real part of the optical dielectric constant. The optical dielectric constant is found to be lowest in the cubic HYO films. An intermediate dielectric constant is found in HZO films that is predominantly in the monoclinic phase, but additionally hosts the cubic phase. The highest dielectric constant is observed in HCO films that are predominantly in the cubic phase with inclusions of the monoclinic phase. The observed trend is in good agreement with the dominant role of the dopant type in setting the optical dielectric constant. 
    more » « less
  6. Combinatorial growth is capable of creating a compositional gradient for thin film materials and thus has been adopted to explore composition variation mostly for metallic alloy thin films and some dopant concentrations for ceramic thin films. This study uses a combinatorial pulsed laser deposition method to successfully fabricate two‐phase oxide–oxide vertically aligned nanocomposite (VAN) thin films of La0.7Sr0.3MnO3(LSMO)‐NiO with variable composition across the film area. The LSMO‐NiO compositional gradient across the film alters the two‐phase morphology of the VAN through varying nanopillar size and density. Additionally, the magnetic anisotropy and magnetoresistance properties of the nanocomposite thin films increase with increasing NiO composition. This demonstration of a combinatorial method for VAN growth can increase the efficiency of nanocomposite thin film research by allowing all possible compositions of thin film materials to be explored in a single deposition.

     
    more » « less