skip to main content


Search for: All records

Creators/Authors contains: "Dravid, Vinayak P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In a scanning transmission electron microscope (STEM), producing a high-resolution image generally requires an electron beam focused to the smallest point possible. However, the magnetic lenses used to focus the beam are unavoidably imperfect, introducing aberrations that limit resolution. Modern STEMs overcome this by using hardware aberration correctors comprised of many multipole elements, but these devices are complex, expensive, and can be difficult to tune. We demonstrate a design for an electrostatic phase plate that can act as an aberration corrector. The corrector is comprised of annular segments, each of which is an independent two-terminal device that can apply a constant or ramped phase shift to a portion of the electron beam. We show the improvement in image resolution using an electrostatic corrector. Engineering criteria impose that much of the beam within the probe-forming aperture be blocked by support bars, leading to large probe tails for the corrected probe that sample the specimen beyond the central lobe. We also show how this device can be used to create other STEM beam profiles such as vortex beams and probes with a high degree of phase diversity, which improve information transfer in ptychographic reconstructions.

     
    more » « less
  2. The presence of heavy metals in our water supply poses an immense global public health burden. Heavy metal consumption is tied to increased mortality and a wide range of insidious health outcomes. In recent years, great strides have been made toward nanotechnological approaches for environmental problems, specifically the design of adsorbents to detoxify water, as well as for a related challenge of recovering valuable metals at low concentrations. However, applying nanomaterials at scale and differentiating which nanomaterials are best suited for particular applications can be challenging. Here, we report a methodology for loading nanomaterial coatings onto adsorbent membranes, testing different coatings against one another, and leveraging these materials under a variety of conditions. Our tailored coating for lead remediation, made from manganese-doped goethite nanoparticles, can filter lead from contaminated water to below detectable levels when coated onto a cellulose membrane, and the coated membrane can be recovered and reused for multiple cycles through mild tuning of pH. The Nano-SCHeMe methodology demonstrates a platform approach for effectively deploying nanomaterials for environmental applications and for direct and fair comparisons among these nanomaterials. Moreover, this approach is flexible and expansive in that our coatings have the potential to be applied to a range of sorbents. 
    more » « less
    Free, publicly-accessible full text available May 10, 2024
  3. Abstract Material properties strongly depend on the nature and concentration of defects. Characterizing these features may require nano- to atomic-scale resolution to establish structure–property relationships. 4D-STEM, a technique where diffraction patterns are acquired at a grid of points on the sample, provides a versatile method for highlighting defects. Computational analysis of the diffraction patterns with virtual detectors produces images that can map material properties. Here, using multislice simulations, we explore different virtual detectors that can be applied to the diffraction patterns that go beyond the binary response functions that are possible using ordinary STEM detectors. Using graphene and lead titanate as model systems, we investigate the application of virtual detectors to study local order and in particular defects. We find that using a small convergence angle with a rotationally varying detector most efficiently highlights defect signals. With experimental graphene data, we demonstrate the effectiveness of these detectors in characterizing atomic features, including vacancies, as suggested in simulations. Phase and amplitude modification of the electron beam provides another process handle to change image contrast in a 4D-STEM experiment. We demonstrate how tailored electron beams can enhance signals from short-range order and how a vortex beam can be used to characterize local symmetry. 
    more » « less
  4. Free, publicly-accessible full text available May 3, 2024
  5. Free, publicly-accessible full text available May 9, 2024
  6. Abstract

    Nanoparticles with high-index facets are intriguing because such facets can lend the structure useful functionality, including enhanced catalytic performance and wide-ranging optical tunability. Ligand-free solid-state syntheses of high index-facet nanoparticles, through an alloying-dealloying process with foreign volatile metals, are attractive owing to their materials generality and high yields. However, the role of foreign atoms in stabilizing the high-index facets and the dynamic nature of the transformation including the coarsening and facet regulation process are still poorly understood. Herein, the transformation of Pt salts to spherical seeds and then to tetrahexahedra, is studied in situ via gas-cell transmission electron microscopy. The dynamic behaviors of the alloying and dealloying process, which involves the coarsening of nanoparticles and consequent facet regulation stage are captured in the real time with a nanoscale spatial resolution. Based on additional direct evidence obtained using atom probe tomography and density functional theory calculations, the underlying mechanisms of the alloying-dealloying process are uncovered, which will facilitate broader explorations of high-index facet nanoparticle synthesis.

     
    more » « less
  7. Abstract Chromatin organization over multiple length scales plays a critical role in the regulation of transcription. Deciphering the interplay of these processes requires high-resolution, three-dimensional, quantitative imaging of chromatin structure in vitro . Herein, we introduce ChromSTEM, a method that utilizes high-angle annular dark-field imaging and tomography in scanning transmission electron microscopy combined with DNA-specific staining for electron microscopy. We utilized ChromSTEM for an in-depth quantification of 3D chromatin conformation with high spatial resolution and contrast, allowing for characterization of higher-order chromatin structure almost down to the level of the DNA base pair. Employing mass scaling analysis on ChromSTEM mass density tomograms, we observed that chromatin forms spatially well-defined higher-order domains, around 80 nm in radius. Within domains, chromatin exhibits a polymeric fractal-like behavior and a radially decreasing mass-density from the center to the periphery. Unlike other nanoimaging and analysis techniques, we demonstrate that our unique combination of this high-resolution imaging technique with polymer physics-based analysis enables us to (i) investigate the chromatin conformation within packing domains and (ii) quantify statistical descriptors of chromatin structure that are relevant to transcription. We observe that packing domains have heterogeneous morphological properties even within the same cell line, underlying the potential role of statistical chromatin packing in regulating gene expression within eukaryotic nuclei. 
    more » « less