skip to main content


Search for: All records

Creators/Authors contains: "Driscoll, Charles T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Artisanal and small-scale gold mining (ASGM) is the largest global anthropogenic mercury (Hg) source and is widespread in the Peruvian Amazon. Consuming Hg-laden foods exposes people to this potent neurotoxin. While numerous studies have examined fish Hg content near ASGM, Hg accumulation in other commonly consumed animal- and plant-based foods from terrestrial environments is often overlooked. In this study, we aim to address understudied dietary Hg exposures. To understand Hg exposure from food staples in the Peruvian Amazon, we measured total and methyl Hg in local crops, fish, chicken meat, chicken feathers, and eggs from ASGM-impacted and upstream (reference) communities. Diet surveys were used to estimate probable weekly Hg intake from each food. Fish and chicken stable carbon and nitrogen isotope signatures were analyzed to evaluate trophic magnification. Though few crops exceeded food safety recommendations, rice methyl Hg proportions were high (84%). Trophic level was an expected key predictor of fish Hg content. 81% (17 of 21) of local carnivorous fish exceeded WHO and USEPA recommendations. Compared to upstream communities, mining-impacted communities demonstrated elevated total Hg in crops (1.55 (IQR: 0.60-3.03) μg/kg upstream versus 3.38 (IQR: 1.62-11.58) in mining areas), chicken meats (2.69 (IQR: BDL-9.96) μg/kg versus 19.68 (IQR: 6.33-48.1)), and feathers (91.20 (IQR: 39.19-216.13) μg/kg versus 329.99 (IQR: 173.22-464.99)). Chicken meats from mining areas exhibited over double the methyl Hg concentrations of those upstream. Methyl Hg fractions in chicken muscle tissue averaged 93%. Egg whites and livers exceeded Hg recommendations most frequently. Proximity to mining, but not trophic position, was a predictor of chicken Hg content. Our results demonstrate that terrestrial and aquatic foods can accumulate Hg from mining activity, introducing additional human Hg exposure routes. However, locally sourced carnivorous fish was the largest contributor to an estimated three-fold exceedance of the provisional tolerable weekly Hg intake.

     
    more » « less
  3. Free, publicly-accessible full text available September 1, 2024
  4. Soper, Fiona (Ed.)
    Nitrogen (N) is a critical element in many ecological and biogeochemical processes in forest ecosystems. Cycling of N is sensitive to changes in climate, atmospheric carbon dioxide (CO2) concentrations, and air pollution. Streamwater nitrate draining a forested ecosystem can indicate how an ecosystem is responding to these changes. We observed a pulse in streamwater nitrate concentration and export at a long-term forest research site in eastern North America that resulted in a 10-fold increase in nitrate export compared to observations over the prior decade. The pulse in streamwater nitrate occurred in a reference catchment in the 2013 water year, but was not associated with a distinct disturbance event. We analyzed a suite of environmental variables to explore possible causes. The correlation between each environmental variable and streamwater nitrate concentration was consistently higher when we accounted for the antecedent conditions of the variable prior to a given streamwater observation. In most cases, the optimal antecedent period exceeded two years. We assessed the most important variables for predicting streamwater nitrate concentration by training a machine learning model to predict streamwater nitrate concentration in the years preceding and during the streamwater nitrate pulse. The results of the correlation and machine learning analyses suggest that the pulsed increase in streamwater nitrate resulted from both (1) decreased plant uptake due to lower terrestrial gross primary production, possibly due to increased soil frost or reduced solar radiation or both; and (2) increased net N mineralization and nitrification due to warm temperatures from 2010 to 2013. Additionally, variables associated with hydrological transport of nitrate, such as maximum stream discharge, emerged as important, suggesting that hydrology played a role in the pulse. Overall, our analyses indicate that the streamwater nitrate pulse was caused by a combination of factors that occurred in the years prior to the pulse, not a single disturbance event. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  5. Abstract

    Sulfur, as an essential nutrient for plant growth, has increasingly been used in fertiliser applications for many crops. This increase is coincident with declines in atmospheric sulfur deposition in response to air quality improvements in the United States and Europe. Here, we evaluate trends in sulfur fertiliser sales by mass, as a proxy for fertiliser applications, and estimate total atmospheric sulfur deposition across the Midwestern United States. Crop acreage, yield and sulfur fertiliser application substantially increased between 1985 and 2015, coincident with declines in atmospheric sulfur deposition. The increase in sulfur fertiliser has outpaced the relative rate of change in other major nutrient fertilisers including nitrogen, phosphorus and potassium, by approximately 7-fold prior to 2009, and 29-fold after 2009. We suggest that there is a critical need to develop sulfur management tools that optimize fertiliser applications to maintain crop yields while minimizing the consequences of excess sulfur in the environment.

     
    more » « less
  6. Abstract

    The persistence of future forests depends on the success of tree seedlings which are experiencing increasing physiological stress from changing climate and air pollution. Although the moss layer can serve as an important substrate for tree seedlings, its potential for reducing environmental stress and enhancing the establishment of seedlings remains poorly understood. We tested if the moss layer decreased environmental stress and increased the abundance of balsam fir seedlings dominant in high-elevation forests of northeastern United States that are sensitive to changing climate and mercury deposition. We surveyed balsam fir seedling density by substrate (moss, litter, other) on 120 quadrats (1 × 1 m) in two contrasting canopy environments (in gaps and under canopies), measured seedling stress, and quantified mercury content in seedlings and substrates. We observed that, in both canopy environments, tree seedlings established on moss exhibited (i) increased density, (ii) decreased physiological stress, and (iii) higher potential to recruit into larger size classes, compared to seedlings established in litter. Regardless of canopy environment, seedling foliar mercury levels did not correspond to substrate mercury despite large differences in substrate mercury concentrations (relative to moss, litter concentrations were ~ 4-times greater and soil concentrations were ~ 6-times greater), likely reflecting the dominance of foliar over root uptake of mercury. Because the moss layer appeared to mitigate seedling drought stress, and to increase seedling establishment and recruitment compared to other substrates, these microsite effects should be considered in models predicting forest regeneration and dynamics under increased drought stress associated with the ongoing climate warming.

     
    more » « less
  7. abstract In this article marking the 40th anniversary of the US National Science Foundation's Long Term Ecological Research (LTER) Network, we describe how a long-term ecological research perspective facilitates insights into an ecosystem's response to climate change. At all 28 LTER sites, from the Arctic to Antarctica, air temperature and moisture variability have increased since 1930, with increased disturbance frequency and severity and unprecedented disturbance types. LTER research documents the responses to these changes, including altered primary production, enhanced cycling of organic and inorganic matter, and changes in populations and communities. Although some responses are shared among diverse ecosystems, most are unique, involving region-specific drivers of change, interactions among multiple climate change drivers, and interactions with other human activities. Ecosystem responses to climate change are just beginning to emerge, and as climate change accelerates, long-term ecological research is crucial to understand, mitigate, and adapt to ecosystem responses to climate change. 
    more » « less
  8. Abstract

    Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.

     
    more » « less