skip to main content


Search for: All records

Creators/Authors contains: "Droitcour, Amy D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cognitive buildings use data on how occupants respond to the built environment to proactively make occupant-centric adjustments to lighting, temperature, ventilation, and other environmental parameters. However, sensors that unobtrusively and ubiquitously measure occupant responses are lacking. Here we show that Doppler-radar based sensors, which can sense small physiological motions, provide accurate occupancy detection and estimation of vital signs in challenging, realistic circumstances. Occupancy was differentiated from an empty room over 93% of the time in a 3.4 m × 8.5 m conference room with a single sensor in both wall and ceiling-mounted configurations. Occupancy was successfully detected while an occupant was under the table, visibly blocked from the sensor, a scenario where infrared, ultrasound, and video-based occupancy sensors would fail. Heart and respiratory rates were detected in all seats in the conference room with a single ceiling-mounted sensor. The occupancy sensor can be used to control HVAC and lighting with a short, 1–2 min delay and to provide information for space utilization optimization. Heart and respiratory rate sensing could provide additional feedback to future human-building interactive systems that use vital signs to determine how occupant comfort and wellness is changing with time. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. A number of algorithms have been developed to extract heart rate from physiological motion data using Doppler radar system. Yet, it is very challenging to eliminate noise associated with surroundings, especially with a single-channel Doppler radar system. However, single-channel Doppler radars provide the advantage of operating at lower power. Additionally, heart rate extraction using single-channel Doppler radar has remained somewhat unexplored. This has motivated the development of effective signal processing algorithms for signals received from single-channel Doppler radars. Three algorithms have been studied for estimating heart rate. The first algorithm is based on applying FFT on an FIR filtered signal. In the second algorithm, autocorrelation was performed on the filtered data. Thirdly, a peak finding algorithm was used in conjunction with a moving average preceded by a clipper to determine the heart rate. The results obtained were compared with heart rate readings from a pulse oximeter. With a mean difference of 2.6 bpm, the heart rate from Doppler radar matched that from the pulse oximeter most frequently when the peak finding algorithm was used. The results obtained using autocorrelation and peak finding algorithm (with standard deviations of 2.6 bpm and 4.0 bpm) suggest that a single channel Doppler radar system can be a viable alternative to contact heart rate monitors in patients for whom contact measurements are not feasible. 
    more » « less