skip to main content


Search for: All records

Creators/Authors contains: "Drout, Maria R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    SN 2021aefxis a normal Type Ia supernova (SN) showing excess emission and redward color evolution over the first ∼ 2 days. We present analyses of this SN using our high-cadence KMTNet multiband photometry, spectroscopy, and publicly available data, including first measurements of its explosion epoch (MJD 59529.32 ± 0.16) and onset of power-law rise (tPL= MJD 59529.85 ± 0.55; often calledfirst light) associated with the main ejecta56Ni distribution. The first KMTNet detection of SN 2021aefx precedestPLby ∼ 0.5 hr, indicating presence of additional power sources. Our peak-spectrum confirms its intermediate Type Ia subclassification between core-normal and broad-Line, and we estimate an ejecta mass of ∼ 1.34M. The spectral evolution identifies material reaching >40,000 km s−1(fastest ever observed in Type Ia SNe) and at least two split-velocity ejecta components expanding homologously: (1) a normal-velocity (∼ 12,400 km s−1) component consistent with typical photospheric evolution of near-Chandrasekhar-mass ejecta; and (2) a high-velocity (∼ 23,500 km s−1) secondary component visible during the first ∼ 3.6 days post-explosion, which locates the component within the outer <16% of the ejecta mass. Asymmetric subsonic explosion processes producing a nonspherical secondary photosphere provide an explanation for the simultaneous appearance of the two components, and may also explain the excess emission via a slight56Ni enrichment in the outer ∼ 0.5% of the ejecta mass. Our 300 days post-peak nebular-phase spectrum advances constraints against nondegenerate companions and further supports a near-Chandrasekhar-mass explosion origin. Off-center ignited delayed-detonations are likely responsible for the observed features of SN 2021aefx in some normal Type Ia SNe.

     
    more » « less
  2. Abstract

    We present a search for host galaxy associations for the third set of repeating fast radio burst (FRB) sources discovered by the CHIME/FRB Collaboration. Using the ∼1′ CHIME/FRB baseband localizations and probabilistic methods, we identify potential host galaxies of two FRBs, 20200223B and 20190110C at redshifts of 0.06024(2) and 0.12244(6), respectively. We also discuss the properties of a third marginal candidate host galaxy association for FRB 20191106C with a host redshift of 0.10775(1). The three putative host galaxies are all relatively massive, fall on the standard mass–metallicity relationship for nearby galaxies, and show evidence of ongoing star formation. They also all show signatures of being in a transitional regime, falling in thegreen valley, which is between the bulk of star-forming and quiescent galaxies. The plausible host galaxies identified by our analysis are consistent with the overall population of repeating and nonrepeating FRB hosts while increasing the fraction of massive and bright galaxies. Coupled with these previous host associations, we identify a possible excess of FRB repeaters whose host galaxies haveMuMrcolors redder than the bulk of star-forming galaxies. Additional precise localizations are required to confirm this trend.

     
    more » « less
  3. Abstract

    We present preexplosion optical and infrared (IR) imaging at the site of the type II supernova (SN II) 2023ixf in Messier 101 at 6.9 Mpc. We astrometrically registered a ground-based image of SN 2023ixf to archival Hubble Space Telescope (HST), Spitzer Space Telescope (Spitzer), and ground-based near-IR images. A single point source is detected at a position consistent with the SN at wavelengths ranging from HSTRband to Spitzer 4.5μm. Fitting with blackbody and red supergiant (RSG) spectral energy distributions (SEDs), we find that the source is anomalously cool with a significant mid-IR excess. We interpret this SED as reprocessed emission in a 8600Rcircumstellar shell of dusty material with a mass ∼5 × 10−5Msurrounding alog(L/L)=4.74±0.07andTeff=3920160+200K RSG. This luminosity is consistent with RSG models of initial mass 11M, depending on assumptions of rotation and overshooting. In addition, the counterpart was significantly variable in preexplosion Spitzer 3.6 and 4.5μm imaging, exhibiting ∼70% variability in both bands correlated across 9 yr and 29 epochs of imaging. The variations appear to have a timescale of 2.8 yr, which is consistent withκ-mechanism pulsations observed in RSGs, albeit with a much larger amplitude than RSGs such asαOrionis (Betelgeuse).

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Abstract V471 Tau is a post-common-envelope binary consisting of an eclipsing DA white dwarf and a K-type main-sequence star in the Hyades star cluster. We analyzed publicly available photometry and spectroscopy of V471 Tau to revise the stellar and orbital parameters of the system. We used archival K2 photometry, archival Hubble Space Telescope spectroscopy, and published radial-velocity measurements of the K-type star. Employing Gaussian processes to fit for rotational modulation of the system flux by the main-sequence star, we recovered the transits of the white dwarf in front of the main-sequence star for the first time. The transits are shallower than would be expected from purely geometric occultations owing to gravitational microlensing during transit, which places an additional constraint on the white-dwarf mass. Our revised mass and radius for the main-sequence star is consistent with single-star evolutionary models given the age and metallicity of the Hyades. However, as noted previously in the literature, the white dwarf is too massive and too hot to be the result of single-star evolution given the age of the Hyades, and may be the product of a merger scenario. We independently estimate the conditions of the system at the time of common envelope that would result in the measured orbital parameters today. 
    more » « less
  5. Abstract

    Periodic variables illuminate the physical processes of stars throughout their lifetime. Wide-field surveys continue to increase our discovery rates of periodic variable stars. Automated approaches are essential to identify interesting periodic variable stars for multiwavelength and spectroscopic follow-up. Here we present a novel unsupervised machine-learning approach to hunt for anomalous periodic variables using phase-folded light curves presented in the Zwicky Transient Facility Catalogue of Periodic Variable Stars by Chen et al. We use a convolutional variational autoencoder to learn a low-dimensional latent representation, and we search for anomalies within this latent dimension via an isolation forest. We identify anomalies with irregular variability. Most of the top anomalies are likely highly variable red giants or asymptotic giant branch stars concentrated in the Milky Way galactic disk; a fraction of the identified anomalies are more consistent with young stellar objects. Detailed spectroscopic follow-up observations are encouraged to reveal the nature of these anomalies.

     
    more » « less
  6. Abstract

    In previous work, we identified a population of 38 cool and luminous variable stars in the Magellanic Clouds and examined 11 in detail in order to classify them as either Thorne–Żytkow objects (TŻOs; red supergiants with a neutron star cores) or super-asymptotic giant branch (sAGB) stars (the most massive stars that will not undergo core collapse). This population includes HV 2112, a peculiar star previously considered in other works to be either a TŻO or high-mass asymptotic giant branch (AGB) star. Here we continue this investigation, using the kinematic and radio environments and local star formation history of these stars to place constraints on the age of the progenitor systems and the presence of past supernovae. These stars are not associated with regions of recent star formation, and we find no evidence of past supernovae at their locations. Finally, we also assess the presence of heavy elements and lithium in their spectra compared to red supergiants. We find strong absorption in Li and s-process elements compared to RSGs in most of the sample, consistent with sAGB nucleosynthesis, while HV 2112 shows additional strong lines associated with TŻO nucleosynthesis. Coupled with our previous mass estimates, the results are consistent with the stars being massive (∼4–6.5M) or sAGB (∼6.5–12M) stars in the thermally pulsing phase, providing crucial observations of the transition between low- and high-mass stellar populations. HV 2112 is more ambiguous; it could either be a maximally massive sAGB star, or a TŻO if the minimum mass for stability extends down to ≲13M.

     
    more » « less
  7. null (Ed.)
  8. Abstract

    We present the discovery of the fading radio transient FIRST J153350.8+272729. The source had a maximum observed 5 GHz radio luminosity of 8 × 1039erg s−1in 1986, but by 2019 had faded by a factor of nearly 400. It is located at the center of a galaxy (SDSS J153350.89+272729) at 147 Mpc, which shows weak Type II Seyfert activity. We show that a tidal disruption event (TDE) is the preferred scenario for FIRST J153350.8+272729, although it could plausibly be interpreted as the afterglow of a long-durationγ-ray burst. This is only the second TDE candidate to be first discovered at radio wavelengths. Its luminosity fills a gap between the radio afterglows of subrelativistic TDEs in the local universe, and relativistic TDEs at high redshifts. The unusual properties of FIRST J153350.8+272729 (ongoing nuclear activity in the host galaxy, high radio luminosity) motivate more extensive TDE searches in untargeted radio surveys.

     
    more » « less
  9. null (Ed.)
  10. null (Ed.)
    ABSTRACT We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 yr before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single source consistent with being the SN 2019yvr progenitor system, the second SN Ib progenitor candidate after iPTF13bvn. We also analysed pre-explosion Spitzer/Infrared Array Camera (IRAC) imaging, but we do not detect any counterparts at the SN location. SN 2019yvr was highly reddened, and comparing its spectra and photometry to those of other, less extinguished SNe Ib we derive $E(B-V)=0.51\substack{+0.27\\ -0.16}$ mag for SN 2019yvr. Correcting photometry of the pre-explosion source for dust reddening, we determine that this source is consistent with a log (L/L⊙) = 5.3 ± 0.2 and $T_{\mathrm{eff}} = 6800\substack{+400\\ -200}$ K star. This relatively cool photospheric temperature implies a radius of 320$\substack{+30\\ -50}~\mathrm{ R}_{\odot}$, much larger than expectations for SN Ib progenitor stars with trace amounts of hydrogen but in agreement with previously identified SN IIb progenitor systems. The photometry of the system is also consistent with binary star models that undergo common envelope evolution, leading to a primary star hydrogen envelope mass that is mostly depleted but still seemingly in conflict with the SN Ib classification of SN 2019yvr. SN 2019yvr had signatures of strong circumstellar interaction in late-time (>150 d) spectra and imaging, and so we consider eruptive mass-loss and common envelope evolution scenarios that explain the SN Ib spectroscopic class, pre-explosion counterpart, and dense circumstellar material. We also hypothesize that the apparent inflation could be caused by a quasi-photosphere formed in an extended, low-density envelope, or circumstellar matter around the primary star. 
    more » « less