skip to main content


Search for: All records

Creators/Authors contains: "Du, Peizhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stars that pass close to the supermassive black holes located in the center of galaxies can be disrupted by tidal forces, leading to flares that are observed as bright transient events in sky surveys. The rate for these events to occur depends on the black hole spins, which in turn can be affected by ultra-light bosons due to superradiance. We perform a detailed analysis of these effects and show that searches for stellar tidal disruptions have the potential to uncover the existence of ultra-light bosons. In particular, we find that upcoming stellar tidal disruption rate measurements by the Vera Rubin Observatory’s Legacy Survey of Space and Time can be used to either discover or rule out bosons with masses ranging from 10 −20 to 10 −18  eV. Our analysis also indicates that these measurements may be used to constrain a variety of supermassive black hole spin distributions and determine if close-to maximal spins are preferred. 
    more » « less
  2. A bstract We present cosmological constraints on the sum of neutrino masses as a function of the neutrino lifetime, in a framework in which neutrinos decay into dark radiation after becoming non-relativistic. We find that in this regime the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO) and (uncalibrated) luminosity distance to supernovae from the Pantheon catalog constrain the sum of neutrino masses ∑ m ν to obey ∑ m ν < 0 . 42 eV at (95% C.L.). While the bound has improved significantly as compared to the limits on the same scenario from Planck 2015, it still represents a significant relaxation of the constraints as compared to the stable neutrino case. We show that most of the improvement can be traced to the more precise measurements of low- ℓ polarization data in Planck 2018, which leads to tighter constraints on τ reio (and thereby on A s ), breaking the degeneracy arising from the effect of (large) neutrino masses on the amplitude of the CMB power spectrum. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    A bstract We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a “bounce” configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work. 
    more » « less