skip to main content


Search for: All records

Creators/Authors contains: "DuVivier, A. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Earth system models are valuable tools for understanding how the Arctic snow‐ice system and the feedbacks therein may respond to a warming climate. In this analysis, we investigate snow on Arctic sea ice to better understand how snow conditions may change under different forcing scenarios. First, we use in situ, airborne, and satellite observations to assess the realism of the Community Earth System Model (CESM) in simulating snow on Arctic sea ice. CESM versions one and two are evaluated, with V1 being the Large Ensemble experiment (CESM1‐LE) and V2 being configured with low‐ and high‐top atmospheric components. The assessment shows CESM2 underestimates snow depth and produces overly uniform snow distributions, whereas CESM1‐LE produces a highly variable, excessively‐thick snow cover. Observations indicate that snow in CESM2 accumulates too slowly in autumn, too quickly in winter‐spring, and melts too soon and rapidly in late spring. The 1950–2050 trends in annual mean snow depths are markedly smaller in CESM2 (−0.8 cm decade−1) than in CESM1‐LE (−3.6 cm decade−1) due to CESM2 having less snow overall. A perennial, thick sea‐ice cover, cool summers, and excessive summer snowfall facilitate a thicker, longer‐lasting snow cover in CESM1‐LE. Under the SSP5‐8.5 forcing scenario, CESM2 shows that, compared to present‐day, snow on Arctic sea ice will: (1) undergo enhanced, earlier spring melt, (2) accumulate less in summer‐autumn, (3) sublimate more, and (4) facilitate marginally more snow‐ice formation. CESM2 also reveals that summers with snow‐free ice can occur ∼30–60 years before an ice‐free central Arctic, which may promote faster sea‐ice melt.

     
    more » « less
  2. Abstract

    We analyze two preindustrial experiments from the Community Earth System Model version 2 to characterize the impact of sea ice physics on differences in coastal sea ice production around Antarctica and the resulting impact on the ocean and atmosphere. The experiment in which sea ice is a more realistic “mushy” mixture of solid ice and brine has a substantial increase in coastal sea ice frazil and snow ice production that is accompanied by decreasing bottom ice growth and increasing bottom melt. The more realistic “mushy” physics leads to an increase in water mass formation at denser water classes due primarily to surface ice processes. As a result, the subsurface ocean is denser, saltier, and there is an increase in Antarctic Bottom Water formation of0.5 Sv. For the atmosphere, “mushy” ice physics leads to decreased turbulent heat flux and low level cloud cover near the Antarctic coast.

     
    more » « less
  3. Abstract

    An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low‐top” (40 km, with limited chemistry) and “high‐top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low‐latitude precipitation and shortwave cloud forcing biases; better representation of the Madden‐Julian Oscillation; better El Niño‐Southern Oscillation‐related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low‐ and high‐top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

     
    more » « less