skip to main content


Search for: All records

Creators/Authors contains: "Duan, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lerat, Emmanuelle (Ed.)
    Abstract Phylogenetic and functional group analyses of the genomes of anaerobic bacteria isolated from Periplaneta americana digestive tracts suggest that they represent novel Lachnospiraceae genera. PAL113 and PAL227 isolate genomes encoded short-chain fatty acid biosynthetic pathways and plant fiber and chitin catabolism and other carbohydrate utilization genes common in related Lachnospiraceae species, yet the presence of operons containing flagellar assembly pathways was among several distinguishing features. In general, PAL113 and PAL227 isolates encode an array of gene products that will enable them to thrive in the insect gut environment and potentially play a role in host diet processing. We hypothesize that the cladogenesis of these isolates can be a result of their oxygen sensitivity and reliance upon the host for dispersal and genetic drift and not necessarily a result of an ongoing mutualism. 
    more » « less
  2. Drake, Harold L. (Ed.)
    ABSTRACT Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides , Dysgonomonas , Paludibacter , and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility. IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach ( Periplaneta americana ) harbors many bacterial phyla (e.g., Bacteroidetes ) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development. 
    more » « less