skip to main content


Search for: All records

Creators/Authors contains: "Duncan, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Organic electronics can be biocompatible and conformable, enhancing the ability to interface with tissue. However, the limitations of speed and integration have, thus far, necessitated reliance on silicon-based technologies for advanced processing, data transmission and device powering. Here we create a stand-alone, conformable, fully organic bioelectronic device capable of realizing these functions. This device, vertical internal ion-gated organic electrochemical transistor (vIGT), is based on a transistor architecture that incorporates a vertical channel and a miniaturized hydration access conduit to enable megahertz-signal-range operation within densely packed integrated arrays in the absence of crosstalk. These transistors demonstrated long-term stability in physiologic media, and were used to generate high-performance integrated circuits. We leveraged the high-speed and low-voltage operation of vertical internal ion-gated organic electrochemical transistors to develop alternating-current-powered conformable circuitry to acquire and wirelessly communicate signals. The resultant stand-alone device was implanted in freely moving rodents to acquire, process and transmit neurophysiologic brain signals. Such fully organic devices have the potential to expand the utility and accessibility of bioelectronics to a wide range of clinical and societal applications. 
    more » « less
    Free, publicly-accessible full text available July 26, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. The acetylperoxy + HO 2 reaction has multiple impacts on the troposphere, with a triplet pathway leading to peracetic acid + O 2 (reaction (1a)) competing with singlet pathways leading to acetic acid + O 3 (reaction (1b)) and acetoxy + OH + O 2 (reaction (1c)). A recent experimental study has reported branching fractions for these three pathways ( α 1a , α 1b , and α 1c ) from 229 K to 294 K. We constructed a theoretical model for predicting α 1a , α 1b , and α 1c using quantum chemical and Rice–Ramsperger–Kassel–Marcus/master equation (RRKM/ME) simulations. Our main quantum chemical method was Weizmann-1 Brueckner Doubles (W1BD) theory; we combined W1BD and equation-of-motion spin-flip coupled cluster (SF) theory to treat open-shell singlet structures. Using RRKM/ME simulations that included all conformers of acetylperoxy–HO 2 pre-reactive complexes led to a 298 K triplet rate constant, k 1a = 5.11 × 10 −12 cm 3 per molecule per s, and values of α 1a in excellent agreement with experiment. Increasing the energies of all singlet structures by 0.9 kcal mol −1 led to a combined singlet rate constant, k 1b+1c = 1.20 × 10 −11 cm 3 per molecule per s, in good agreement with experiment. However, our predicted variations in α 1b and α 1c with temperature are not nearly as large as those measured, perhaps due to the inadequacy of SF theory in treating the transition structures controlling acetic acid + O 3 formation vs. acetoxy + OH + O 2 formation. 
    more » « less
  4. Free, publicly-accessible full text available August 1, 2024
  5. Abstract

    Measurement of the largest angular scale (< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 << 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of125(130)μKarcmin. We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 << 125 with the first bin showingD< 0.023μKCMB2at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.

     
    more » « less
  6. Abstract

    As anthropogenic activities are increasing the frequency and severity of droughts, understanding whether and how fast populations can adapt to sudden changes in their hydric environment is critically important. Here, we capitalize on the introduction of the Cuban brown anole lizard (Anolis sagrei) in North America to assess the contemporary evolution of a widespread terrestrial vertebrate to an abrupt climatic niche shift. We characterized hydric balance in 30 populations along a large climatic gradient. We found that while evaporative and cutaneous water loss varied widely, there was no climatic cline, as would be expected under adaptation. Furthermore, the skin of lizards from more arid environments was covered with smaller scales, a condition thought to limit water conservation and thus be maladaptive. In contrast to environmental conditions, genome-averaged ancestry was a significant predictor of water loss. This was reinforced by our genome-wide association analyses, which indicated a significant ancestry-specific effect for water loss at one locus. Thus, our study indicates that the water balance of invasive brown anoles is dictated by an environment-independent introduction and hybridization history and highlights genetic interactions or genetic correlations as factors that might forestall adaptation. Alternative water conservation strategies, including behavioral mitigation, may influence the brown anole invasion success and require future examination.

     
    more » « less
  7. Abstract

    Modern implantable bioelectronics demand soft, biocompatible components that make robust, low‐impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed‐conducting suture, the e‐suture, is presented. Composed of silk, the conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e‐suture has mixed‐conducting properties at the interface with biological tissue as well as effective insulation along its length. The e‐suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e‐sutures remains stable for months with robust brain activity patterns. Furthermore, e‐sutures can establish electrophoretic‐based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E‐sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery.

     
    more » « less
  8. Abstract

    The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.

     
    more » « less
  9. Abstract

    We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor. We measure temperatures of 432.3 ± 2.8, 355.6 ± 1.3, 317.9 ± 1.7, and 294.7 ± 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower-frequency Very Large Array observations suggests relatively warmer (∼7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements.

     
    more » « less