skip to main content


Search for: All records

Creators/Authors contains: "Dunlop, J. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the degree of dust obscured star formation in 49 massive (log10(M⋆/M⊙) > 9) Lyman-break galaxies (LBGs) at z = 6.5–8 observed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Reionization Era Bright Emission Line Survey (REBELS) large program. By creating deep stacks of the photometric data and the REBELS ALMA measurements we determine the average rest-frame ultraviolet (UV), optical, and far-infrared (FIR) properties which reveal a significant fraction (fobs = 0.4–0.7) of obscured star formation, consistent with previous studies. From measurements of the rest-frame UV slope, we find that the brightest LBGs at these redshifts show bluer (β ≃ −2.2) colours than expected from an extrapolation of the colour–magnitude relation found at fainter magnitudes. Assuming a modified blackbody spectral energy distribution (SED) in the FIR (with dust temperature of $T_{\rm d} = 46\, {\rm K}$ and βd = 2.0), we find that the REBELS sources are in agreement with the local ‘Calzetti-like’ starburst Infrared-excess (IRX)–β relation. By re-analysing the data available for 108 galaxies at z ≃ 4–6 from the ALMA Large Program to Investigate C+ at Early Times (ALPINE) using a consistent methodology and assumed FIR SED, we show that from z ≃ 4–8, massive galaxies selected in the rest-frame UV have no appreciable evolution in their derived IRX–β relation. When comparing the IRX–M⋆ relation derived from the combined ALPINE and REBELS sample to relations established at z < 4, we find a deficit in the IRX, indicating that at z > 4 the proportion of obscured star formation is lower by a factor of ≳ 3 at a given a M⋆. Our IRX–β results are in good agreement with the high-redshift predictions of simulations and semi-analytic models for z ≃ 7 galaxies with similar stellar masses and star formation rates.

     
    more » « less
  2. ABSTRACT We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z⋆, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 < z < 3.80. Based on a combined analysis of deep optical and near-IR spectra, tracing the rest-frame far-ultraviolet (FUV; 1200–2000 Å) and rest-frame optical (3400–5500 Å), respectively, we present the first simultaneous determination of the stellar and gas-phase mass–metallicity relationships (MZRs) at z ≃ 3.4. In both cases, we find that metallicity increases with increasing stellar mass (M⋆) and that the power-law slope at M⋆ ≲ 1010M⊙ of both MZRs scales as $Z \propto M_{\star }^{0.3}$. Comparing the stellar and gas-phase MZRs, we present direct evidence for super-solar O/Fe ratios (i.e. α-enhancement) at z > 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M⋆. 
    more » « less
  3. Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS). 
    more » « less