skip to main content


Search for: All records

Creators/Authors contains: "Duran, Rodolfo Barniol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Despite a generally accepted framework for describing the gamma-ray burst (GRB) afterglows, the nature of the compact object at the central engine and the mechanism behind the prompt emission remain debated. The striped jet model is a promising venue to connect the various GRB stages since it gives a robust prediction for the relation of jet bulk acceleration, magnetization, and dissipation profile as a function of distance. Here, we use the constraints of the magnetization and bulk Lorentz of the jet flow at the large scales, where the jet starts interacting with the ambient gas in a large sample of bursts to (i) test the striped jet model for the GRB flow and (ii) study its predictions for the prompt emission and the constraints on the nature of the central engine. We find that the peak of the photospheric component of the emission predicted by the model is in agreement with the observed prompt emission spectra in the majority of the bursts in our sample, with a radiative efficiency of about 10 per cent. Furthermore, we adopt two different approaches to correlate the peak energies of the bursts with the type of central engine to find that more bursts are compatible with a neutron star central engine compared to a black hole one. Lastly, we conclude that the model favours broader distribution of stripe length-scales which results in a more gradual dissipation profile in comparison to the case, where the jet stripes are characterized by a single length-scale.

     
    more » « less
  2. Abstract GRB 221009A ( z = 0.151) is one of the closest known long γ -ray bursts (GRBs). Its extreme brightness across all electromagnetic wavelengths provides an unprecedented opportunity to study a member of this still-mysterious class of transients in exquisite detail. We present multiwavelength observations of this extraordinary event, spanning 15 orders of magnitude in photon energy from radio to γ -rays. We find that the data can be partially explained by a forward shock (FS) from a highly collimated relativistic jet interacting with a low-density, wind-like medium. Under this model, the jet’s beaming-corrected kinetic energy ( E K ∼ 4 × 10 50 erg) is typical for the GRB population. The radio and millimeter data provide strong limiting constraints on the FS model, but require the presence of an additional emission component. From equipartition arguments, we find that the radio emission is likely produced by a small amount of mass (≲6 × 10 −7 M ⊙ ) moving relativistically (Γ ≳ 9) with a large kinetic energy (≳10 49 erg). However, the temporal evolution of this component does not follow prescriptions for synchrotron radiation from a single power-law distribution of electrons (e.g., in a reverse shock or two-component jet), or a thermal-electron population, perhaps suggesting that one of the standard assumptions of afterglow theory is violated. GRB 221009A will likely remain detectable with radio telescopes for years to come, providing a valuable opportunity to track the full lifecycle of a powerful relativistic jet. 
    more » « less
  3. Abstract We present a population of 19 radio-luminous supernovae (SNe) with emission reaching L ν ∼ 10 26 –10 29 erg s −1 Hz −1 in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., ρ CSM ∝ r −2 ) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, M ̇ ∼ 10 − 4 – 10 − 1 M ⊙ yr −1 (for an assumed wind velocity of 1000 km s −1 ); emission from an off-axis relativistic jet entering our line of sight; or the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with L ν ∼ 10 28 erg s −1 Hz −1 might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at https://doi.org/10.5281/zenodo.4895112 . 
    more » « less