skip to main content


Search for: All records

Creators/Authors contains: "Ellis, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accurate prediction of physical alterations in carbonate reservoirs under dissolution is critical for development of subsurface energy technologies. The impact of mineral dissolution on flow characteristics depends on the connectivity and tortuosity of the pore network. Persistent homology is a tool from algebraic topology that describes the size and connectivity of topological features. When applied to 3D X‐ray computed tomography (XCT) imagery of rock cores, it provides a novel metric of pore network heterogeneity. Prior works have demonstrated the efficacy of persistent homology in predicting flow properties in numerical simulations of flow through porous media. Its ability to combine size, spatial distribution, and connectivity information make it a promising tool for understanding reactive transport in complex pore networks, yet limited work has been done to apply persistence analysis to experimental studies on natural rocks. In this study, three limestone cores were imaged by XCT before and after acid‐driven dissolution flow‐through experiments. Each XCT scan was analyzed using persistent homology. In all three rocks, permeability increase was driven by the growth of large, connected pore bodies. The two most homogenous samples saw an increased effect nearer to the flow inlet, suggesting emerging preferential flow paths as the reaction front progresses. The most heterogeneous sample showed an increase in along‐core homogeneity during reaction. Variability of persistence showed moderate positive correlation with pore body size increase. Persistence heterogeneity analysis could be used to anticipate where greatest pore size evolution may occur in a reservoir targeted for subsurface development, improving confidence in project viability.

     
    more » « less
  2. Abstract Lithium is an economically important element that is increasingly extracted from brines accumulated in continental basins. While a number of studies have identified silicic magmatic rocks as the ultimate source of dissolved brine lithium, the processes by which Li is mobilized remain poorly constrained. Here we focus on the potential of low-temperature, post-eruptive processes to remove Li from volcanic glass and generate Li-rich fluids. The rhyolitic glasses in this study (from the Yellowstone-Snake River Plain volcanic province in western North America) have interacted with meteoric water emplacement as revealed by textures and a variety of geochemical and isotopic signatures. Indices of glass hydration correlate with Li concentrations, suggesting Li is lost to the water during the water-rock interaction. We estimate the original Li content upon deposition and the magnitude of Li depletion both by direct in situ glass measurements and by applying a partition-coefficient approach to plagioclase Li contents. Across our whole sample set (19 eruptive units spanning ca. 10 m.y.), Li losses average 8.9 ppm, with a maximum loss of 37.5 ppm. This allows estimation of the dense rock equivalent of silicic volcanic lithologies required to potentially source a brine deposit. Our data indicate that surficial processes occurring post-eruption may provide sufficient Li to form economic deposits. We found no relationship between deposit age and Li loss, i.e., hydration does not appear to be an ongoing process. Rather, it occurs primarily while the deposit is cooling shortly after eruption, with δ18O and δD in our case study suggesting a temperature window of 40° to 70°C. 
    more » « less
  3. null (Ed.)
    Abstract Dense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)