skip to main content


Search for: All records

Creators/Authors contains: "Emma, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. The morphology of mixed organic/inorganic particles can strongly influence the physicochemical properties of aerosols but remains relatively less examined in particle formation studies. The morphologies of inorganic seed particles grown with either -pinene or limonene secondary organic aerosol (SOA) generated in a flow tube reactor were found to depend on initial seed particle water content. Effloresced and deliquesced ammonium sulfate seed particles were generated at low relative humidity (<15% RH, dry) and high relative humidity (~60% RH, wet) and were also coated with secondary organic material under low growth and high growth conditions. Particles were dried and analyzed using SMPS and TEM for diameter and substrate-induced diameter changes and for the prevalence of phase separation for organic-coated particles. Effloresced inorganic seed particle diameters generally increased after impaction, whereas deliquesced inorganic seed particles had smaller differences in diameter, although they appeared morphologically similar to the effloresced seed particles. Differences in the changes to diameter for deliquesced seed particles suggest crystal restructuring with RH cycling. SOA-coated particles showed negative diameter changes for low organic growth, although wet-seeded organic particles changed by larger magnitudes compared to dry-seeded organic particles. High organic growth gave wide ranging diameter percent differences for both dry- and wet-seeded samples. Wet-seeded particles with organic coatings occasionally showed a textured morphology unseen in the coated particles with dry seeds. Using a flow tube reactor with a combination of spectrometry and microscopy techniques allows for insights into the dependence of aerosol particle morphology on formation parameters for two seed conditions and two secondary organic precursors. 
    more » « less
    Free, publicly-accessible full text available September 26, 2024
  3. How, when, and why organisms age are fascinating issues that can only be fully addressed by adopting an evolutionary perspective. Consistently, the main evolutionary theories of ageing, namely the Mutation Accumulation theory, the Antagonistic Pleiotropy theory, and the Disposable Soma theory, have formulated stimulating hypotheses that structure current debates on both the proximal and ultimate causes of organismal ageing. However, all these theories leave a common area of biology relatively under-explored. The Mutation Accumulation theory and the Antagonistic Pleiotropy theory were developed under the traditional framework of population genetics, and therefore are logically centred on the ageing of individuals within a population. The Disposable Soma theory, based on principles of optimising physiology, mainly explains ageing within a species. Consequently, current leading evolutionary theories of ageing do not explicitly model the countless interspecific and ecological interactions, such as symbioses and host-microbiomes associations, increasingly recognized to shape organismal evolution across the Web of Life. Moreover, the development of network modelling supporting a deeper understanding on the molecular interactions associated with ageing within and between organisms is also bringing forward new questions regarding how and why molecular pathways associated with ageing evolved. Here, we take an evolutionary perspective to examine the effects of organismal interactions on ageing across different levels of biological organisation, and consider the impact of surrounding and nested systems on organismal ageing. We also apply this perspective to suggest open issues with potential to expand the standard evolutionary theories of ageing. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Misra, Hari S. (Ed.)
    Understanding metabolism in the pathogen Candida glabrata is key to identifying new targets for antifungals. The thiamine biosynthetic (THI) pathway is partially defective in C . glabrata , but the transcription factor Cg Pdc2 upregulates some thiamine biosynthetic and transport genes. One of these genes encodes a recently evolved thiamine pyrophosphatase ( CgPMU3 ) that is critical for accessing external thiamine. Here, we demonstrate that Cg Pdc2 primarily regulates THI genes. In Saccharomyces cerevisiae , Pdc2 regulates both THI and pyruvate decarboxylase (PDC) genes, with PDC proteins being a major thiamine sink. Deletion of PDC2 is lethal in S . cerevisiae in standard growth conditions, but not in C . glabrata . We uncover cryptic cis elements in C . glabrata PDC promoters that still allow for regulation by Sc Pdc2, even when that regulation is not apparent in C . glabrata . C . glabrata lacks Thi2, and it is likely that inclusion of Thi2 into transcriptional regulation in S . cerevisiae allows for a more complex regulation pattern and regulation of THI and PDC genes. We present evidence that Pdc2 functions independent of Thi2 and Thi3 in both species. The C-terminal activation domain of Pdc2 is intrinsically disordered and critical for species differences. Truncation of the disordered domains leads to a gradual loss of activity. Through a series of cross species complementation assays of transcription, we suggest that there are multiple Pdc2-containing complexes, and C . glabrata appears to have the simplest requirement set for THI genes, except for CgPMU3 . CgPMU3 has different cis requirements, but still requires Pdc2 and Thi3 to be upregulated by thiamine starvation. We identify the minimal region sufficient for thiamine regulation in CgTHI20 , CgPMU3 , and ScPDC5 promoters. Defining the cis and trans requirements for THI promoters should lead to an understanding of how to interrupt their upregulation and provide targets in metabolism for antifungals. 
    more » « less
    Free, publicly-accessible full text available June 7, 2024
  5. Gardner, Stephanie (Ed.)
    Fear of negative evaluation (FNE) is the primary factor causing student anxiety in active learning. This study of 566 undergraduates establishes that LGBTQ+, first-generation, and disabled students disproportionately experience FNE, which causes students to overthink their responses and reduces their participation in class.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. Uncrewed aerial systems (UASs) have emerged as powerful ecological observation platforms capable of filling critical spatial and spectral observation gaps in plant physiological and phenological traits that have been difficult to measure from space-borne sensors. Despite recent technological advances, the high cost of drone-borne sensors limits the widespread application of UAS technology across scientific disciplines. Here, we evaluate the tradeoffs between off-the-shelf and sophisticated drone-borne sensors for mapping plant species and plant functional types (PFTs) within a diverse grassland. Specifically, we compared species and PFT mapping accuracies derived from hyperspectral, multispectral, and RGB imagery fused with light detection and ranging (LiDAR) or structure-for-motion (SfM)-derived canopy height models (CHM). Sensor–data fusion were used to consider either a single observation period or near-monthly observation frequencies for integration of phenological information (i.e., phenometrics). Results indicate that overall classification accuracies for plant species and PFTs were highest in hyperspectral and LiDAR-CHM fusions (78 and 89%, respectively), followed by multispectral and phenometric–SfM–CHM fusions (52 and 60%, respectively) and RGB and SfM–CHM fusions (45 and 47%, respectively). Our findings demonstrate clear tradeoffs in mapping accuracies from economical versus exorbitant sensor networks but highlight that off-the-shelf multispectral sensors may achieve accuracies comparable to those of sophisticated UAS sensors by integrating phenometrics into machine learning image classifiers. 
    more » « less
  7. The pH of aerosol particles remains challenging to measure because of their small size, complex composition, and high acidity. Acidity in aqueous aerosol particles, which are found abundantly in the atmosphere, impacts many chemical processes from reaction rates to cloud formation. Only one technique – pH paper – currently exists for directly determining the pH of aerosol particles, and this is restricted to measuring average acidity for entire particle populations. Other methods for evaluating aerosol pH include filter samples, particle-into-liquid sampling, Raman spectroscopy, organic dyes, and thermodynamic models, but these either operate in a higher pH range or are unable to assess certain chemical species or complexity. Here, we present a new method for determining acidity of individual particles and particle phases using carbon quantum dots as a novel in situ fluorophore. Carbon quantum dots are easily synthesized, shelf stable, and sensitive to pH in the highly acidic regime from pH 0 to pH 3 relevant to ambient aerosol particles. To establish the method, a calibration curve was formed from the ratiometric fluorescence intensity of aerosolized standard solutions with a correlation coefficient ( R 2 ) of 0.99. Additionally, the pH of aerosol particles containing a complex organic mixture (COM) representative of environmental aerosols was also determined, proving the efficacy of using carbon quantum dots as pH-sensitive fluorophores for complex systems. The ability to directly measure aerosol particle and phase acidity in the correct pH range can help parametrize atmospheric models and improve projections for other aerosol properties and their influence on health and climate. 
    more » « less
  8. Although many species shift their phenology with climate change, species vary significantly in the direction and magnitude of these responses (i.e., phenological sensitivity). Studies increasingly detect early phenology or high phenological sensitivity to climate in non-native species, which may favor non-native species over natives in warming climates. Yet relatively few studies explicitly compare phenological responses to climate between native vs. non-native species or between non-native populations in the native vs. introduced range, limiting our ability to quantify the role of phenology in invasion success. Here, we review the empirical evidence for and against differences in phenology and phenological sensitivity to climate in both native vs. non-native species and native and introduced populations of non-native species. Contrary to common assumptions, native and non-native plant species did not consistently differ in mean phenology or phenological sensitivity. However, non-native plant species were often either just as or more sensitive, but rarely less sensitive, to climate as natives. Introduced populations of non-native plant species often show earlier reproduction than native populations of the same species, but there was mixed evidence for differences in phenological sensitivity between introduced and native plant populations. We found very few studies comparing native vs. invasive animal phenology. Future work should characterize phenological sensitivity to climate in native vs. non-native plant and animal species, in native vs. introduced populations of non-native species, and across different stages of invasion, and should carefully consider how differences in phenology might promote invasion success or disadvantage native species under climate change. 
    more » « less