skip to main content


Search for: All records

Creators/Authors contains: "Emsellem, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.

     
    more » « less
  2. ABSTRACT

    Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.

     
    more » « less
  3. Abstract

    We use PHANGS–James Webb Space Telescope (JWST) data to identify and classify 1271 compact 21μm sources in four nearby galaxies using MIRI F2100W data. We identify sources using a dendrogram-based algorithm, and we measure the background-subtracted flux densities for JWST bands from 2 to 21μm. Using the spectral energy distribution (SED) in JWST and HST bands plus ALMA and MUSE/VLT observations, we classify the sources by eye. Then we use this classification to define regions in color–color space and so establish a quantitative framework for classifying sources. We identify 1085 sources as belonging to the ISM of the target galaxies with the remainder being dusty stars or background galaxies. These 21μm sources are strongly spatially associated with Hiiregions (>92% of sources), while 74% of the sources are coincident with a stellar association defined in the HST data. Using SED fitting, we find that the stellar masses of the 21μm sources span a range of 102–104Mwith mass-weighted ages down to 2 Myr. There is a tight correlation between attenuation-corrected Hαand 21μm luminosity forLν,F2100W> 1019W Hz−1. Young embedded source candidates selected at 21μm are found below this threshold and haveM< 103M.

     
    more » « less
  4. Abstract We compare mid-infrared (mid-IR), extinction-corrected H α , and CO (2–1) emission at 70–160 pc resolution in the first four PHANGS–JWST targets. We report correlation strengths, intensity ratios, and power-law fits relating emission in JWST’s F770W, F1000W, F1130W, and F2100W bands to CO and H α . At these scales, CO and H α each correlate strongly with mid-IR emission, and these correlations are each stronger than the one relating CO to H α emission. This reflects that mid-IR emission simultaneously acts as a dust column density tracer, leading to a good match with the molecular-gas-tracing CO, and as a heating tracer, leading to a good match with the H α . By combining mid-IR, CO, and H α at scales where the overall correlation between cold gas and star formation begins to break down, we are able to separate these two effects. We model the mid-IR above I ν = 0.5 MJy sr −1 at F770W, a cut designed to select regions where the molecular gas dominates the interstellar medium (ISM) mass. This bright emission can be described to first order by a model that combines a CO-tracing component and an H α -tracing component. The best-fitting models imply that ∼50% of the mid-IR flux arises from molecular gas heated by the diffuse interstellar radiation field, with the remaining ∼50% associated with bright, dusty star-forming regions. We discuss differences between the F770W, F1000W, and F1130W bands and the continuum-dominated F2100W band and suggest next steps for using the mid-IR as an ISM tracer. 
    more » « less
  5. ABSTRACT

    In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.

     
    more » « less
  6. Abstract

    We present maps tracing the fraction of dust in the form of polycyclic aromatic hydrocarbons (PAHs) in IC 5332, NGC 628, NGC 1365, and NGC 7496 from JWST/MIRI observations. We trace the PAH fraction by combining the F770W (7.7μm) and F1130W (11.3μm) filters to track ionized and neutral PAH emission, respectively, and comparing the PAH emission to F2100W, which traces small, hot dust grains. We find the averageRPAH= (F770W + F1130W)/F2100W values of 3.3, 4.7, 5.1, and 3.6 in IC 5332, NGC 628, NGC 1365, and NGC 7496, respectively. We find that Hiiregions traced by MUSE Hαshow a systematically low PAH fraction. The PAH fraction remains relatively constant across other galactic environments, with slight variations. We use CO+Hi+Hαto trace the interstellar gas phase and find that the PAH fraction decreases above a value ofIHα/ΣHI+H21037.5ergs1kpc2(Mpc2)1in all four galaxies. Radial profiles also show a decreasing PAH fraction with increasing radius, correlated with lower metallicity, in line with previous results showing a strong metallicity dependence to the PAH fraction. Our results suggest that the process of PAH destruction in ionized gas operates similarly across the four targets.

     
    more » « less
  7. Abstract

    We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z) and low stellar masses (104.7–107.6M). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot/σ0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot/σ0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7.

     
    more » « less
  8. ABSTRACT

    Connecting the gas in H ii regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H ii regions evolve over time. With PHANGS–MUSE, we detect nearly 24 000 H ii regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS–HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H ii regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the $\mathrm{H}\, \alpha$ equivalent width $\mathrm{EW}(\mathrm{H}\, \alpha)$, the $\mathrm{H}\, \alpha/\mathrm{FUV}$ flux ratio, and the ionization parameter, log q. As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, $\mathrm{EW}(\mathrm{H}\, \alpha)$ and log q show the most consistent trends and appear to be most reliable tracers for the age of an H ii region.

     
    more » « less
  9. Abstract

    Polycyclic aromatic hydrocarbons (PAHs) play a critical role in the reprocessing of stellar radiation and balancing the heating and cooling processes in the interstellar medium but appear to be destroyed in Hiiregions. However, the mechanisms driving their destruction are still not completely understood. Using PHANGS–JWST and PHANGS–MUSE observations, we investigate how the PAH fraction changes in about 1500 Hiiregions across four nearby star-forming galaxies (NGC 628, NGC 1365, NGC 7496, and IC 5332). We find a strong anticorrelation between the PAH fraction and the ionization parameter (the ratio between the ionizing photon flux and the hydrogen density) of Hiiregions. This relation becomes steeper for more luminous Hiiregions. The metallicity of Hiiregions has only a minor impact on these results in our galaxy sample. We find that the PAH fraction decreases with the Hαequivalent width—a proxy for the age of the Hiiregions—although this trend is much weaker than the one identified using the ionization parameter. Our results are consistent with a scenario where hydrogen-ionizing UV radiation is the dominant source of PAH destruction in star-forming regions.

     
    more » « less
  10. ABSTRACT Understanding the spatial distribution of metals within galaxies allows us to study the processes of chemical enrichment and mixing in the interstellar medium. In this work, we map the 2D distribution of metals using a Gaussian Process Regression (GPR) for 19 star-forming galaxies observed with the Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT–MUSE) as a part of the PHANGS–MUSE survey. We find that 12 of our 19 galaxies show significant 2D metallicity variation. Those without significant variations typically have fewer metallicity measurements, indicating this is due to the dearth of ${\rm H\, {\small II}}$ regions in these galaxies, rather than a lack of higher-order variation. After subtracting a linear radial gradient, we see no enrichment in the spiral arms versus the disc. We measure the 50 per cent correlation scale from the two-point correlation function of these radially subtracted maps, finding it to typically be an order of magnitude smaller than the fitted GPR kernel scale length. We study the dependence of the two-point correlation scale length with a number of global galaxy properties. We find no relationship between the 50 per cent correlation scale and the overall gas turbulence, in tension with existing theoretical models. We also find more actively star-forming galaxies, and earlier type galaxies have a larger 50 per cent correlation scale. The size and stellar mass surface density do not appear to correlate with the 50 per cent correlation scale, indicating that perhaps the evolutionary state of the galaxy and its current star formation activity is the strongest indicator of the homogeneity of the metal distribution. 
    more » « less