skip to main content


Search for: All records

Creators/Authors contains: "Erb, Dawn K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The resonantly scattered Lyαline illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Lyαemission in 12 relatively low-mass (M∼ 109M)z∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Lyαblue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Lyαand absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the Hicolumn density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the Hicolumn density in the outer halos.

     
    more » « less
  2. Abstract Observations of high-redshift galaxies ( z > 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogs to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use Hubble Space Telescope/Cosmic Origins Spectrograph and Large Binocular Telescope/Multi-Object Double Spectrographs spectra to study two nearby EELGs, J104457 and J141851. The far-UV spectra indicate that these two galaxies contain stellar populations with ages ≲10 Myr and metallicities ≤0.15 Z ⊙ . We use photoionization modeling to compare emission lines from models of single-age bursts of star formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O iii ] or very-high-ionization lines like He ii or O iv ]. Photoionization modeling using the stellar populations fit from the UV continuum similarly is not capable of reproducing the very-high-energy emission lines. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high-ionization lines of He ii and O iv ]. We find that we need a blackbody of 80,000 K and ∼45%–55% of the luminosity from the blackbody and young stellar population to reproduce the very-high-ionization lines while simultaneously reproducing the low-, intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogs. 
    more » « less
  3. Abstract Detailed analyses of high-redshift galaxies are challenging because these galaxies are faint, but this difficulty can be overcome with gravitational lensing, in which the magnification of the flux enables spectroscopy with a high signal-to-noise ratio (S/N). We present the rest-frame ultraviolet (UV) Keck Echellette Spectrograph and Imager (ESI) spectrum of the newly discovered z = 2.79 lensed galaxy SDSS J1059+4251. With an observed magnitude F814W = 18.8 and a magnification factor μ = 31 ± 3, J1059+4251 is both highly magnified and intrinsically luminous, about two magnitudes brighter than M UV * at z ∼ 2–3. With a stellar mass M * = (3.22 ± 0.20) × 10 10 M ⊙ , star formation rate SFR = 50 ± 7 M ⊙ yr −1 , and stellar metallicity Z * ≃ 0.15–0.5 Z ⊙ , J1059+4251 is typical of bright star-forming galaxies at similar redshifts. Thanks to the high S/N and the spectral resolution of the ESI spectrum, we are able to separate the interstellar and stellar features and derive properties that would be inaccessible without the aid of the lensing. We find evidence of a gas outflow with speeds up to −1000 km s −1 , and of an inflow that is probably due to accreting material seen along a favorable line of sight. We measure relative elemental abundances from the interstellar absorption lines and find that α -capture elements are overabundant compared to iron-peak elements, suggestive of rapid star formation. However, this trend may also be affected by dust depletion. Thanks to the high data quality, our results represent a reliable step forward in the characterization of typical galaxies at early cosmic epochs. 
    more » « less
  4. Abstract Stellar population models produce radiation fields that ionize oxygen up to O +2 , defining the limit of standard H ii region models (<54.9 eV). Yet, some extreme emission-line galaxies, or EELGs, have surprisingly strong emission originating from much higher ionization potentials. We present UV HST/COS and optical LBT/MODS spectra of two nearby EELGs that have very high-ionization emission lines (e.g., He ii λλ 1640,4686 C iv λλ 1548,1550, [Fe v ] λ 4227, [Ar iv ] λλ 4711,4740). We define a four-zone ionization model that is augmented by a very high-ionization zone, as characterized by He +2 (>54.4 eV). The four-zone model has little to no effect on the measured total nebular abundances, but does change the interpretation of other EELG properties: we measure steeper central ionization gradients; higher volume-averaged ionization parameters; and higher central T e , n e , and log U values. Traditional three-zone estimates of the ionization parameter can underestimate the average log U by up to 0.5 dex. Additionally, we find a model-independent dichotomy in the abundance patterns, where the α /H abundances are consistent but N/H, C/H, and Fe/H are relatively deficient, suggesting these EELGs are α /Fe-enriched by more than three times. However, there still is a high-energy ionizing photon production problem (HEIP 3 ). Even for such α /Fe enrichment and very high log U s, photoionization models cannot reproduce the very high-ionization emission lines observed in EELGs. 
    more » « less
  5. ABSTRACT We present the first statistical analysis of kinematically resolved, spatially extended $\rm Ly\alpha$ emission around z = 2–3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (zmed = 2.29) comprises the subset with typical KCWI integration times of ∼5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse $\rm Ly\alpha$ emission with respect to the stellar continuum within projected galactocentric distances of ≲30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged $\rm Ly\alpha$ spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of $\rm Ly\alpha$ resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended $\rm Ly\alpha$ emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of ≤2 per cent (∼2σ) of the integrated $\rm Ly\alpha$ emission. The symmetry implies that the $\rm Ly\alpha$ scattering medium is dominated by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of $\rm Ly\alpha$ emission is marginally stronger along galaxy minor axes for galaxies with relatively weak $\rm Ly\alpha$ emission. We speculate that this weak directional dependence of $\rm Ly\alpha$ emission becomes discernible only when the $\rm Ly\alpha$ escape fraction is low. These discoveries highlight the need for similar analyses in simulations with $\rm Ly\alpha$ radiative transfer modelling. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $\rm{H\,{\small I}}$$\rm Ly\,\alpha$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $\rm{H\,{\small I}}$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $\rm{H\,{\small I}}$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$^{-1}\,$ dominate the kinematics of circumgalactic $\rm{H\,{\small I}}$ out to Dtran ≃ 50 kpc, while $\rm{H\,{\small I}}$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $\rm{H\,{\small I}}$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $\rm Ly\,\alpha$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion. 
    more » « less
  7. Abstract

    Far-ultraviolet (FUV; ∼1200–2000 Å) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of the James Webb Space Telescope will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before; however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the Cosmic Origins Spectrograph Legacy Spectroscopic Survey (CLASSY) treasury and its first high-level science product, the CLASSY atlas. CLASSY builds on the Hubble Space Telescope (HST) archive to construct the first high-quality (S/N1500 Å≳ 5/resel), high-resolution (R∼ 15,000) FUV spectral database of 45 nearby (0.002 <z< 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellar mass (6.2 < logM(M) < 10.1), star formation rate (−2.0 < log SFR (Myr−1) < +1.6), direct gas-phase metallicity (7.0 < 12+log(O/H) < 8.8), ionization (0.5 < O32< 38.0), reddening (0.02 <E(BV) < 0.67), and nebular density (10 <ne(cm−3) < 1120). CLASSY is biased to UV-bright star-forming galaxies, resulting in a sample that is consistent with thez∼ 0 mass–metallicity relationship, but is offset to higher star formation rates by roughly 2 dex, similar toz≳ 2 galaxies. This unique set of properties makes the CLASSY atlas the benchmark training set for star-forming galaxies across cosmic time.

     
    more » « less