skip to main content


Search for: All records

Creators/Authors contains: "Evans, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microelectromechanical Systems (MEMS) energy harvesters have been extensively investigated over the past decade, but increasing power density and long-term reliability under high acceleration and low frequency are still major concerns. This study focused on the development of a low-frequency lead zirconate titanate (PZT) based energy harvester capable of operating at high acceleration >4 g with high power density performance. This study investigates the performance effects of altering the electrode configuration and poling configuration to maximize power density. The study investigated using four different types of electrode configuration consisting of long and short interdigitated electrodes (IDE) to operate in d 33 mode, and traditional parallel plate configuration to operate in d 31 mode. The results were numerically and experimentally validated. The results illustrate that the d 33 mode configuration was able to generate >3200 μW mm -3 with good reliability of up to 4 g. 
    more » « less
  2. Abstract

    Most ionospheric models cannot sufficiently reproduce the observed electron density profiles in the E‐region ionosphere, since they usually underestimate electron densities and do not match the profile shape. Mitigation of these issues is often addressed by increasing the solar soft X‐ray flux which is ineffective for resolving data‐model discrepancies. We show that low‐resolution cross sections and solar spectral irradiances fail to preserve structure within the data, which considerably impacts radiative processes in the E‐region, and are largely responsible for the discrepancies between observations and simulations. To resolve data‐model inconsistencies, we utilize new high‐resolution (0.001 nm) atomic oxygen (O) and molecular nitrogen (N2) cross sections and solar spectral irradiances, which contain autoionization and narrow rotational lines that allow solar photons to reach lower altitudes and increase the photoelectron flux. This work improves upon Meier et al. (2007,https://doi.org/10.1029/2006gl028484) by additionally incorporating high‐resolution N2photoionization and photoabsorption cross sections in model calculations. Model results with the new inputs show increased O+production rates of over 500%, larger than those of Meier et al. (2007,https://doi.org/10.1029/2006gl028484) and total ion production rates of over 125%, while production rates decrease by ∼15% in the E‐region in comparison to the results obtained using the cross section compilation from Conway (1988,https://apps.dtic.mil/sti/pdfs/ADA193866.pdf). Low‐resolution molecular oxygen (O2) cross sections from the Conway compilation are utilized for all input cases and indicate that is a dominant contributor to the total ion production rate in the E‐region. Specifically, the photoionization contributed from longer wavelengths is a main contributor at ∼120 km.

     
    more » « less
  3. Abstract

    The ionospheric O+number density can be measured remotely during the day by observing its optically thick 83.4 nm radiance. Some ambiguity is present in the process of retrieving the density due to uncertainties in the initial excitation rate. This can be removed by observing a companion optically thin emission at 61.7 nm originating from the O+(3s2P) state, providing that the ratio of the initial excitation rates is known. Analyses of ICON EUV data using an 83.4/61.7 emission ratio of order 10 result in O+densities lower by ∼2 than other measurements. Key to relating the two emissions is accurate knowledge of the partial photoionization cross sections and the spectroscopy of O+—the topic of this paper. Up to now, no independent evaluation of the ratio of the 83.4/61.6 emission ratio exists. The recent availability of state‐of‐the‐art calculations of O partial photoionization cross sections into a variety of O+states presents an opportunity to evaluate the O+(2p44P)/O+(3s2P) ionization rate ratio. We calculate excitation of these parent states of the emissions including both direct and cascade excitation from higher lying O+energy states. The resulting theoretical prediction gives ratios that range from 13.5 to 12 from solar minimum to maximum, larger than the value of 10 used by the ICON 83.4 and 61.7 nm algorithm. The higher theoretical values for the ratio reconcile the ∼2 discrepancy between simultaneous ICON and other electron density measurements.

     
    more » « less
  4. Abstract

    E‐region models have traditionally underestimated the ionospheric electron density. We believe that this deficiency can be remedied by using high‐resolution photoabsorption and photoionization cross sections in the models. Deep dips in the cross sections allow solar radiation to penetrate deeper into the E‐region producing additional ionization. To validate our concept, we perform a study of model electron density profiles (EDPs) calculated using the Atmospheric Ultraviolet Radiance Integrated Code (AURIC; D. Strickland et al., 1999,https://doi.org/10.1016/s0022-4073(98)00098-3) in the E‐region of the terrestrial ionosphere. We compare AURIC model outputs using new high‐resolution photoionization and photoabsorption cross sections, and solar spectral irradiances during low solar activity with incoherent scatter radar (ISR) measurements from the Arecibo and Millstone Hills observatories, Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC‐1) observations, and outputs from empirical models (IRI‐2016 and FIRI‐2018). AURIC results utilizing the new high‐resolution cross sections reveal a significant difference to model outputs calculated with the low‐resolution cross sections currently used. Analysis of AURIC EDPs using the new high‐resolution data indicate fair agreement with ISR measurements obtained at various times at Arecibo but very good agreement with Millstone Hills ISR observations from ∼96–140 km. However, discrepancies in the altitude of the E‐region peak persist. High‐resolution AURIC calculations are in agreement with COSMIC‐1 observations and IRI‐2016 model outputs between ∼105 and 140 km while FIRI‐2018 outputs underestimate the EDP in this region. Overall, AURIC modeling shows increased E‐region electron densities when utilizing high‐resolution cross sections and high‐resolution solar irradiances, and are likely to be the key to resolving the long standing data‐model discrepancies.

     
    more » « less
  5. Abstract The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) was launched aboard NASA’s Ionospheric Connection (ICON) Explorer satellite in October 2019 to measure winds and temperatures on the limb in the upper mesosphere and lower thermosphere (MLT). Temperatures are observed using the molecular oxygen atmospheric band near 763 nm from 90–127 km altitude in the daytime and 90–108 km in the nighttime. Here we describe the measurement approach and methodology of the temperature retrieval, including unique on-orbit operations that allow for a better understanding of the instrument response. The MIGHTI measurement approach for temperatures is distinguished by concurrent observations from two different sensors, allowing for two self-consistent temperature products. We compare the MIGHTI temperatures against existing MLT space-borne and ground-based observations. The MIGHTI temperatures are within 7 K of these observations on average from 90–95 km throughout the day and night. In the daytime on average from 99–105 km, MIGHTI temperatures are higher than coincident observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s TIMED satellite by 18 K. Because the difference between the MIGHTI and SABER observations is predominantly a constant bias at a given altitude, conclusions of scientific analyses that are based on temperature variations are largely unaffected. 
    more » « less
  6. Abstract

    We have observed electron impact fluorescence from CO2to excite the Cameron bands (CBs), CO (a3Π →X1Σ+; 180–280 nm), the first-negative group (1NG) bands, CO+(B2Σ+X2Σ+; 180–320 nm), the fourth-positive group (4PG) bands, CO (A1Π →X1Σ+; 111–280 nm), and the UV doublet, CO2+(B˜2Σu+X˜2Πg;288.3 and 289.6 nm) in the ultraviolet (UV). This wavelength range matches the spectral region of past and present spacecraft equipped to observe UV dayglow and aurora emissions from the thermospheres (100–300 km) of Mars and Venus. Our large vacuum system apparatus is able to measure the emission cross sections of the strongest optically forbidden UV transitions found in planetary spectra. Based on our cross-sectional measurements, previous CB emission cross-sectional errors exceed a factor of 3. The UV doublet lifetime is perturbed throughB˜2Σu+A˜2Πuspin–orbit coupling. Forward modeling codes of the Mars dayglow have not been accurate in the mid-UV due to systematic errors in these two emission cross sections. We furnish absolute emission cross sections for several band systems over electron energies 20–100 eV for CO2. We present a CB lifetime, which together with emission cross sections, furnish a set of fundamental physical constants for electron transport codes such as AURIC (Atmospheric Ultraviolet Radiance Integrated Code). AURIC and Trans-Mars are used in the analysis of UV spectra from the Martian dayglow and aurora.

     
    more » « less
  7. Abstract Global pollinator declines threaten food production and natural ecosystems. The drivers of declines are complicated and driven by numerous factors such as pesticide use, loss of habitat, rising pathogens due to commercial bee keeping and climate change. Halting and reversing pollinator declines will require a multidisciplinary approach and international cooperation. Here, we summarize 20 presentations given in the symposium ‘Protecting pollinators and our food supply: Understanding and managing threats to pollinator health’ at the 19th Congress of the International Union for the Study of Social Insects in San Diego, 2022. We then synthesize the key findings and discuss future research areas such as better understanding the impact of anthropogenic stressors on wild bees. 
    more » « less
  8. Recent attention has been given to mesoscale phenomena across geospace (∼10 s km to 500 km in the ionosphere or ∼0.5 R E to several R E in the magnetosphere), as their contributions to the system global response are important yet remain uncharacterized mostly due to limitations in data resolution and coverage as well as in computational power. As data and models improve, it becomes increasingly valuable to advance understanding of the role of mesoscale phenomena contributions—specifically, in magnetosphere-ionosphere coupling. This paper describes a new method that utilizes the 2D array of Time History of Events and Macroscale Interactions during Substorms (THEMIS) white-light all-sky-imagers (ASI), in conjunction with meridian scanning photometers, to estimate the auroral scale sizes of intense precipitating energy fluxes and the associated Hall conductances. As an example of the technique, we investigated the role of precipitated energy flux and average energy on mesoscales as contrasted to large-scales for two back-to-back substorms, finding that mesoscale aurora contributes up to ∼80% (∼60%) of the total energy flux immediately after onset during the early expansion phase of the first (second) substorm, and continues to contribute ∼30–55% throughout the remainder of the substorm. The average energy estimated from the ASI mosaic field of view also peaked during the initial expansion phase. Using the measured energy flux and tables produced from the Boltzmann Three Constituent (B3C) auroral transport code (Strickland et al., 1976; 1993), we also estimated the 2D Hall conductance and compared it to Poker Flat Incoherent Scatter Radar conductance values, finding good agreement for both discrete and diffuse aurora. 
    more » « less
  9. Abstract

    The 2022 Tongan volcanic eruption released significant energy into the atmosphere. Tropospheric satellite images show that the eruption generated pressure waves that traveled globally. The Global Observation of the Limb and Disk (GOLD) mission observed significant wave‐like thermospheric temperature perturbations (>100 K) from 12 to 16 UT. These temperature perturbations' spatial curvatures and arrival times are initially similar to the tropospheric wave‐fronts but differ significantly with eastward propagation. The perturbations had a phase speed of ∼300–400 m/s and wavelengths greater than 2,400 km. Near‐concurrent Ionospheric Connection Explorer neutral wind measurements suggest that the eruption's effects reversed the direction of the prevailing thermospheric zonal winds around the perturbed regions. The eruption's global and whole atmospheric effects provide a unique opportunity to study how different atmospheric layers exchange energy and momentum during explosive events. GOLD's synoptic observations are uniquely positioned to study these effects in the middle thermosphere.

     
    more » « less
  10. Free, publicly-accessible full text available January 22, 2025