skip to main content


Search for: All records

Creators/Authors contains: "Favereau, Ludovic"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organic radicals possessing an electronic configuration in which the energy of the singly occupied molecular orbital (SOMO) is below the highest doubly occupied molecular orbital (HOMO) level have recently attracted significant interest, both theoretically and experimentally. The peculiar orbital energetics of these SOMO–HOMO inversion (SHI) organic radicals set their electronic properties apart from the more common situation where the SOMO is the highest occupied orbital of the system. This review gives a general perspective on SHI, with key fundamental aspects regarding the electronic and structural factors that govern this particular electronic configuration in organic radicals. Selected examples of reported compounds with SHI are highlighted to establish molecular guidelines for designing this type of radical, and to showcase the potential of SHI radicals in organic spintronics as well as for the development of more stable luminescent radicals for OLED applications. 
    more » « less
  2. Enantiopure helicene-porphyrin conjugates were prepared. They show strong changes in their circular dichroic response as compared to classical helicene derivatives, with highly intense bisignate Exciton Coupling (EC) signal and Δ ε values up to 680 M −1 cm −1 for the Soret band. They also display circularly polarized fluorescence in the (far-)red region, with dissymmetry factors up to 7 × 10 −4 . 
    more » « less
  3. null (Ed.)
  4. The rationalization of the molecular parameters that influence the intensity and sign of circularly polarized luminescence (CPL) for chiral emitters is a challenging task and remains of high interest for future chiral optoelectronic applications. In this report, we explore the design of novel chiral donor–acceptor structures based on C 2 -symmetric bicarbazole systems and compare the influence of the type of chirality, namely axial versus helical, and the electron withdrawing strength of the acceptor units on the resulting photophysical and CPL properties. By using carbonyl-based acceptors with both axial and helical electron donors, CP-Thermally Activated Delayed Fluoresence (TADF) can be obtained, whose efficiency depends on the dihedral angle between the carbazole moieties, related to the axial and helical chirality of the compounds. The latter also impacts the intensity of the CPL, which shows an opposite trend as a function of the polarity of the solvent, with a notably strong increase of the luminescence dissymmetry factor, g lum , for the helical donor–acceptor compounds related to a subtle reoarganization of the intramolecular charge-transfer process. 
    more » « less
  5. null (Ed.)
    While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, g lum, hardly exceeds 10 −2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric ( μe ) and magnetic (μ m ) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high g lum values, i.e. up to 3–4 × 10 −2 . Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising g El of around 8 × 10 −3 . These results bring about further molecular design guidelines to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures. 
    more » « less
  6. null (Ed.)
  7. Abstract

    The photophysical and chiroptical properties of a novel, chiral helicene‐NHC−Re(I) complex bearing anN‐(aza[6]helicenyl)‐benzimidazolylidene ligand are described, showing its ability to emit yellow circularly polarized luminescence. A comparative analysis of this new system with other helicene‐Re(I) complexes reported to date illustrates the impact of structural modifications on the emissive and absorptive properties.

     
    more » « less