skip to main content


Search for: All records

Creators/Authors contains: "Fayer, Michael D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 27, 2024
  2. Free, publicly-accessible full text available April 20, 2024
  3. Free, publicly-accessible full text available May 25, 2024
  4. NA (Ed.)
    Using ultrafast polarization-selective pump-probe spectroscopy (PSPP) of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to 4 waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions were obtained through analysis of the frequency-dependent anisotropy decays. It was found that the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding when the salt concentration was increased. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. Finally, the structural evolution of the ionic medium was observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to pure water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion, 13 ps, is virtually identical to the time for complete orientation randomization of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network. Using ultrafast polarization-selective pump-probe spectroscopy (PSPP) of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to 4 waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions were obtained through analysis of the frequency-dependent anisotropy decays. It was found that the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding when the salt concentration was increased. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. Finally, the structural evolution of the ionic medium was observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to pure water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion, 13 ps, is virtually identical to the time for complete orientation randomization of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network. 
    more » « less
  5. Carreira, Erick M. (Ed.)
    In highly concentrated salt solutions, the water hydrogen bond (H-bond) network is completely disrupted by the presence of ions. Water is forced to restructure as dictated by the water-ion and ion-ion interactions. Using ultrafast polarization-selective pump-probe spectroscopy (PSPP) of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to 4 waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions were obtained through analysis of the frequency-dependent anisotropy decays. It was found that the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding when the salt concentration was increased. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. Finally, the structural evolution of the ionic medium was observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to pure water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion, 13 ps, is virtually identical to the time for complete orientation randomization of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network. 
    more » « less
  6. NA (Ed.)
    Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photoinduced proton transfer between the photoacid 8-hydroxypyrene-1,3,6- trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photoexcitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an “associated” state, where the proton is “shared” between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a “solvent separated” state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a “water wire”) around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between the emission wavelength and proton-HPTS distance over the simulated time scale, suggesting that the emission wavelength can be used as a ruler for the proton distance. Our simulations reveal that the “associated” state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized “solvent separated” state) corresponds to the longest experimental time constant. 
    more » « less
  7. Shea ; Joan-Emma (Ed.)
    Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photo-induced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photo-excitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an “associated” state, where the proton is “shared” between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a “solvent separated” state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a “water wire”) around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between emission wavelength and proton-HPTS distance over the simulations’ time scale, suggesting that emission wavelength can be used as a ruler for proton distance. Our simulations reveal that the “associated” state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized “solvent-separated” state) corresponds to the longest experimental time constant. 
    more » « less