skip to main content


Search for: All records

Creators/Authors contains: "Fedorov, A. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In contrast to the modern‐day climate, North Pacific deep water formation and a Pacific meridional overturning circulation (PMOC) may have been active during past climate conditions, in particular during the Pliocene epoch (some 3–5 million years ago). Here, we use a climate model simulation with a robust PMOC cell to investigate the pathways of the North Pacific deep water from subduction to upwelling, as revealed by Lagrangian particle trajectories. We find that similar to the present‐day Atlantic Meridional Overturning Circulation (AMOC), most subducted North Pacific deep water upwells in the Southern Ocean. However, roughly 15% upwells in the tropical Indo‐Pacific Oceans instead—a key feature distinguishing the PMOC from the AMOC. The connection to the Indian Ocean is relatively fast, at about 250 years. The connection to the tropical Pacific is slower (∼800 years) as water first travels to the subtropical South Pacific then gradually upwells through the thermocline.

     
    more » « less
  2. Abstract

    The Atlantic Meridional Overturning Circulation (AMOC) is expected to weaken in the 21st century due to increased surface buoyancy. Such AMOC changes in ocean models are often accompanied by a subsurface reduction in density. Here we perform freshwater perturbation experiments with both a 1° coupled model and an idealized zonally averaged ocean‐only model to demonstrate that slow subsurface property changes (1) introduce a negative feedback that erodes the stratification and partially reinvigorates convection and the AMOC and (2) ensure the meridional heat transport weakens less than the AMOC. In the coupled model with a 0.1‐Sv net freshwater flux introduced around Greenland, an initial 22% AMOC reduction over 40 years is followed by a recovery of almost half the lost strength after 400 years. The final heat transport, however, is weakened by only 7%. Similar responses in the idealized model demonstrate that 2‐D ocean‐only dynamics control the changes.

     
    more » « less
  3. Abstract

    Estimates for equilibrium climate sensitivity from current climate models continue to exhibit a large spread, from 2.1 to 4.7 K per carbon dioxide doubling. Recent studies have found that the treatment of precipitation efficiency in deep convective clouds—specifically the conversion rate from cloud condensate to rain Cp—may contribute to the large intermodel spread. It is common for convective parameterization in climate models to carry a constant Cp, although its values are model and resolution dependent. In this study, we investigate how introducing a potential iris feedback, the cloud–climate feedback introduced by parameterizing Cp to increase with surface temperature, affects future climate simulations within a slab ocean configuration of the Community Earth System Model. Progressively stronger dependencies of Cp on temperature unexpectedly increase the equilibrium climate sensitivity monotonically from 3.8 to up to 4.6 K. This positive iris feedback puzzle, in which a reduction in cirrus clouds increases surface temperature, is attributed to changes in the opacity of convectively detrained cirrus. Cirrus clouds reduced largely in ice content and marginally in horizontal coverage, and thus the positive shortwave cloud radiative feedback dominates. The sign of the iris feedback is robust across different cloud macrophysics schemes, which control horizontal cloud cover associated with detrained ice. These results suggest a potentially strong but highly uncertain connection among convective precipitation, detrained anvil cirrus, and the high cloud feedback in a climate forced by increased atmospheric carbon dioxide concentrations.

     
    more » « less
  4. Abstract

    The notion that the Atlantic Meridional Overturning Circulation (AMOC) can have more than one stable equilibrium emerged in the 1980s as a powerful hypothesis to explain rapid climate variability during the Pleistocene. Ever since, the idea that a temporary perturbation of the AMOC—or a permanent change in its forcing—could trigger an irreversible collapse has remained a reason for concern. Here we review literature on the equilibrium stability of the AMOC and present a synthesis that puts our understanding of past and future AMOC behavior in a unifying framework. This framework is based on concepts from Dynamical Systems Theory, which has proven to be an important tool in interpreting a wide range of model behavior. We conclude that it cannot be ruled out that the AMOC in our current climate is in, or close to, a regime of multiple equilibria. But there is considerable uncertainty in the location of stability thresholds with respect to our current climate state, so we have no credible indications of where our present‐day AMOC is located with respect to thresholds. We conclude by identifying gaps in our knowledge and proposing possible ways forward to address these gaps.

     
    more » « less