skip to main content


Search for: All records

Creators/Authors contains: "Feng, Jiansheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The processing–structure–property relationship using poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET) is explored. Specifically, both pre‐extension and preshear of amorphous PLA and PET above their glass transition temperaturesTg, carried out in the affine deformation limit, can induce a specific type of cold crystallization during annealing, i.e., nanoconfined crystallization (NCC) where crystal sizes are limited to a nanoscopic scale in all dimensions so as to render the processed PLA and PET optically transparent. The new polymer structure after premelt deformation can show considerably enhanced mechanical properties. For example, premelt stretching produces geometric condensation of the chain network. This structural alternation can profoundly change the mechanical characteristics, e.g., turning brittle PLA ductile. In contrast, after preshear of amorphous PLA aboveTg, the NCC containing PLA remains brittle, showing the importance to have geometric condensation from processing. Both AFM imaging and SAXS measurements are performed to verify that premelt deformation of PLA and PET indeed results in NCC from annealing that permits the strain‐induced cold crystallization to take place on the length scale of the mesh size of the deformed chain network.

     
    more » « less